• Previous Article
    The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations
  • DCDS Home
  • This Issue
  • Next Article
    On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces
March 2018, 38(3): 1103-1125. doi: 10.3934/dcds.2018046

Remarks on the convergence of an algorithm for curvature-dependent motions of hypersurfaces

1. 

Graduate School of Maritime Sciences, Kobe University, Higashinada, Kobe 658-0022, Japan

2. 

Yasuna Machine Designing, Hojo-Umehara, Himeji 670-0945, Japan

*Corresponding author

Received  December 2016 Revised  September 2017 Published  December 2017

Fund Project: The first author is supported by JSPS KAKENHI Grant Numbers JP17K05364 and JP252470080.

We consider a threshold-type algorithm for curvature-dependent motions (CDM for short) of hypersurfaces. This algorithm was numerically studied by Kimura - Notsu [13], Esedoḡlu - Ruuth - Tsai [7] and Mohammad - Švadlenka [16], where they used the signed distance function as the level set function for CDM. The convergence of this algorithm and its optimal rate have been considered in Ishii - Kimura [12]. In this paper we give different approaches to the optimal rate of convergence to the smooth and compact CDM from [12]. As for the optimality, we give a more precise estimate than that in [12].

Citation: Katsuyuki Ishii, Takahiro Izumi. Remarks on the convergence of an algorithm for curvature-dependent motions of hypersurfaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1103-1125. doi: 10.3934/dcds.2018046
References:
[1]

G. Barles and C. Georgelin, A simple proof of convergence for an approximation scheme for computing motion by mean curvature, SIAM J. Numer. Anal., 32 (1995), 484-500. doi: 10.1137/0732020.

[2]

J. Bence, B. Merriman and S. Osher, Diffusion generated motion by mean curvature, in "Computational Crystal Growers Workshop", J. Taylor ed., Selected Lectures in Math., Amer. Math. Soc., Province, 1992.

[3]

A. Chambolle, An algorithm for mean curvature motion, Interfaces Free Bound., 6 (2004), 195-218.

[4]

A. Chambolle and M. Novaga, Approximation of the anisotropic mean curvature flow, Math. Models Methods Appl. Sci., 17 (2007), 833-844. doi: 10.1142/S0218202507002121.

[5]

A. Chambolle and M. Novaga, Implicit time discretization of the mean curvature flow with a discontinuous forcing term, Interfaces Free Bound., 10 (2008), 283-300.

[6]

M.G. CrandallH. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. A. M. S., 27 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5.

[7]

S. EsedoḡluS.J. Ruuth and R. Tsai, Diffusion generated motion using the signed distance function, J. Comp. Phys., 229 (2010), 1017-1042. doi: 10.1016/j.jcp.2009.10.002.

[8]

T. EtoY. Giga and K. Ishii, An area minimizing scheme for anisotropic mean curvature flow, Adv. Differential Equations, 17 (2012), 1031-1084.

[9]

L.C. Evans, Convergence of an algorithm for mean curvature motion, Indiana Univ. Math. J., 42 (1993), 533-557. doi: 10.1512/iumj.1993.42.42024.

[10]

L.C. Evans and J. Spruck, Motion of level sets by mean curvature Ⅱ, Trans. Amer. Math. Soc., 330 (1992), 321-332. doi: 10.1090/S0002-9947-1992-1068927-8.

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983.

[12]

K. Ishii and M. Kimura, Convergence of a threshold-type algorithm using the signed distance function, Interfaces Free Bound., 18 (2016), 479-522. doi: 10.4171/IFB/371.

[13]

M. Kimura and H. Notsu, A level set method using the signed distance function, Japan J. Indust. Appl. Math., 19 (2002), 415-446. doi: 10.1007/BF03167487.

[14]

S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions, MSJ Memoirs, 13. Mathematical Society of Japan, Tokyo, 2004.

[15]

F. Leoni, Convergence of an approximation scheme for curvature-dependent motion of sets, SIAM J. Numer. Anal., 39 (2001), 1115-1131. doi: 10.1137/S0036142900370459.

[16]

R.Z. Mohammad and K. Švadlenka, Multiphase volume-preserving interface motion via localized signed distance vector scheme, Discrete and Continuous Dynamical Systems, Series S, 8 (2015), 969-988. doi: 10.3934/dcdss.2015.8.969.

[17]

L. Vivier, Convergence of an approximation scheme for computing motions with curvature dependent velocities, Differential Integral Equations, 13 (2000), 1263-1288.

show all references

References:
[1]

G. Barles and C. Georgelin, A simple proof of convergence for an approximation scheme for computing motion by mean curvature, SIAM J. Numer. Anal., 32 (1995), 484-500. doi: 10.1137/0732020.

[2]

J. Bence, B. Merriman and S. Osher, Diffusion generated motion by mean curvature, in "Computational Crystal Growers Workshop", J. Taylor ed., Selected Lectures in Math., Amer. Math. Soc., Province, 1992.

[3]

A. Chambolle, An algorithm for mean curvature motion, Interfaces Free Bound., 6 (2004), 195-218.

[4]

A. Chambolle and M. Novaga, Approximation of the anisotropic mean curvature flow, Math. Models Methods Appl. Sci., 17 (2007), 833-844. doi: 10.1142/S0218202507002121.

[5]

A. Chambolle and M. Novaga, Implicit time discretization of the mean curvature flow with a discontinuous forcing term, Interfaces Free Bound., 10 (2008), 283-300.

[6]

M.G. CrandallH. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. A. M. S., 27 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5.

[7]

S. EsedoḡluS.J. Ruuth and R. Tsai, Diffusion generated motion using the signed distance function, J. Comp. Phys., 229 (2010), 1017-1042. doi: 10.1016/j.jcp.2009.10.002.

[8]

T. EtoY. Giga and K. Ishii, An area minimizing scheme for anisotropic mean curvature flow, Adv. Differential Equations, 17 (2012), 1031-1084.

[9]

L.C. Evans, Convergence of an algorithm for mean curvature motion, Indiana Univ. Math. J., 42 (1993), 533-557. doi: 10.1512/iumj.1993.42.42024.

[10]

L.C. Evans and J. Spruck, Motion of level sets by mean curvature Ⅱ, Trans. Amer. Math. Soc., 330 (1992), 321-332. doi: 10.1090/S0002-9947-1992-1068927-8.

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983.

[12]

K. Ishii and M. Kimura, Convergence of a threshold-type algorithm using the signed distance function, Interfaces Free Bound., 18 (2016), 479-522. doi: 10.4171/IFB/371.

[13]

M. Kimura and H. Notsu, A level set method using the signed distance function, Japan J. Indust. Appl. Math., 19 (2002), 415-446. doi: 10.1007/BF03167487.

[14]

S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions, MSJ Memoirs, 13. Mathematical Society of Japan, Tokyo, 2004.

[15]

F. Leoni, Convergence of an approximation scheme for curvature-dependent motion of sets, SIAM J. Numer. Anal., 39 (2001), 1115-1131. doi: 10.1137/S0036142900370459.

[16]

R.Z. Mohammad and K. Švadlenka, Multiphase volume-preserving interface motion via localized signed distance vector scheme, Discrete and Continuous Dynamical Systems, Series S, 8 (2015), 969-988. doi: 10.3934/dcdss.2015.8.969.

[17]

L. Vivier, Convergence of an approximation scheme for computing motions with curvature dependent velocities, Differential Integral Equations, 13 (2000), 1263-1288.

Figure 1.  Graphs of $ w_k $, $ \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{w}_k $ and $ \bar{w}_k $ (thick curves)
Figure 2.  Graphs of of $ w^k $, $ \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{w}^k $ and $ \bar{w}^k $ (thick curves)
[1]

Qingwen Hu. A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences & Engineering, 2018, 15 (4) : 863-882. doi: 10.3934/mbe.2018039

[2]

Oleksandr Misiats, Nung Kwan Yip. Convergence of space-time discrete threshold dynamics to anisotropic motion by mean curvature. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6379-6411. doi: 10.3934/dcds.2016076

[3]

Y. Goto, K. Ishii, T. Ogawa. Method of the distance function to the Bence-Merriman-Osher algorithm for motion by mean curvature. Communications on Pure & Applied Analysis, 2005, 4 (2) : 311-339. doi: 10.3934/cpaa.2005.4.311

[4]

Hedy Attouch, Alexandre Cabot, Zaki Chbani, Hassan Riahi. Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient. Evolution Equations & Control Theory, 2018, 7 (3) : 353-371. doi: 10.3934/eect.2018018

[5]

Liping Zhang, Soon-Yi Wu, Shu-Cherng Fang. Convergence and error bound of a D-gap function based Newton-type algorithm for equilibrium problems. Journal of Industrial & Management Optimization, 2010, 6 (2) : 333-346. doi: 10.3934/jimo.2010.6.333

[6]

Tetsuya Ishiwata. On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 865-873. doi: 10.3934/dcdss.2011.4.865

[7]

Jinyan Fan, Jianyu Pan. On the convergence rate of the inexact Levenberg-Marquardt method. Journal of Industrial & Management Optimization, 2011, 7 (1) : 199-210. doi: 10.3934/jimo.2011.7.199

[8]

Shahad Al-azzawi, Jicheng Liu, Xianming Liu. Convergence rate of synchronization of systems with additive noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 227-245. doi: 10.3934/dcdsb.2017012

[9]

Yves Bourgault, Damien Broizat, Pierre-Emmanuel Jabin. Convergence rate for the method of moments with linear closure relations. Kinetic & Related Models, 2015, 8 (1) : 1-27. doi: 10.3934/krm.2015.8.1

[10]

Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 503-514. doi: 10.3934/dcds.2005.13.503

[11]

Benjamin B. Kennedy. Multiple periodic solutions of state-dependent threshold delay equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1801-1833. doi: 10.3934/dcds.2012.32.1801

[12]

Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463

[13]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[14]

Gianni Di Pillo, Giampaolo Liuzzi, Stefano Lucidi. A primal-dual algorithm for nonlinear programming exploiting negative curvature directions. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 509-528. doi: 10.3934/naco.2011.1.509

[15]

K. R. Rajagopal. The thermo-mechanics of rate-type fluids. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1133-1145. doi: 10.3934/dcdss.2012.5.1133

[16]

Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483-498. doi: 10.3934/mbe.2013.10.483

[17]

Fabio Camilli, Claudio Marchi. On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks & Heterogeneous Media, 2011, 6 (1) : 61-75. doi: 10.3934/nhm.2011.6.61

[18]

Oleg Makarenkov, Paolo Nistri. On the rate of convergence of periodic solutions in perturbed autonomous systems as the perturbation vanishes. Communications on Pure & Applied Analysis, 2008, 7 (1) : 49-61. doi: 10.3934/cpaa.2008.7.49

[19]

Marek Fila, Michael Winkler. Sharp rate of convergence to Barenblatt profiles for a critical fast diffusion equation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 107-119. doi: 10.3934/cpaa.2015.14.107

[20]

Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (31)
  • HTML views (122)
  • Cited by (0)

Other articles
by authors

[Back to Top]