February 2018, 38(2): 589-614. doi: 10.3934/dcds.2018026

Bounded and unbounded capillary surfaces derived from the catenoid

1. 

KAIST, Department of Mathematical Sciences, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea

2. 

KIAS, School of Mathematics, 87 Hoegi-ro, Dongdaemun-gu, Seoul, South Korea

Received  April 2017 Revised  August 2017 Published  February 2018

Fund Project: This research was supported by Basic Science Research Program through the National Research Foundation of South Korea (NRF) funded by the Ministry of Education, Grant NRF- 2016R1A1A005299

We construct two kinds of capillary surfaces by using a perturbation method. Surfaces of first kind are embedded in a solid ball B of $\mathbb{R}^3$ with assigned mean curvature function and whose boundary curves lie on $\partial B.$ The contact angle along such curves is a non-constant function. Surfaces of second kind are unbounded and embedded in $\mathbb{R}^3 \setminus \tilde B,$ $\tilde B$ being a deformation of a solid ball in $\mathbb{R}^3.$ These surfaces have assigned mean curvature function and one boundary curve on $\partial \tilde B.$ Also in this case the contact angle along the boundary is a non-constant function.

Citation: Filippo Morabito. Bounded and unbounded capillary surfaces derived from the catenoid. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 589-614. doi: 10.3934/dcds.2018026
References:
[1]

C. Gerhardt, Global regularity of the solutions to the capillarity problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 3 (1976), 157-175.

[2]

G. Lieberman, Gradient estimates for capillary-type problems via the maximum principle, Commun. Partial Diff. Equations, 13 (1988), 33-59. doi: 10.1080/03605308808820537.

[3]

F. Morabito, Higher genus capillary surfaces in the unit ball of $\mathbb{R}^3$ Boundary Value Problems 2014 (2014), 23pp. doi: 10.1186/1687-2770-2014-130.

[4]

F. Morabito, Singly periodic minimal surfaces in a solid cylinder of $\mathbb{R}^3$, Discrete Continuous Dynamical Systems, 35 (2015), 4987-5001. doi: 10.3934/dcds.2015.35.4987.

[5]

F. Morabito, Free boundaries surfaces and Saddle Tower minimal surfaces in ${\mathbb S}^2 × \mathbb{R}$, Journal of Mathematical Analysis and Applications, 443 (2016), 478-525. doi: 10.1016/j.jmaa.2016.05.006.

[6]

L. Simon and J. Spruck, Existence and regularity of a capillary surface with prescribed contact angle, Arch. Rational Mech. Anal., 61 (1976), 19-34. doi: 10.1007/BF00251860.

[7]

J. Spruck, On the existence of a capillary surface with prescribed contact angle, Comm. Pure Appl. Math., 28 (1975), 189-200. doi: 10.1002/cpa.3160280202.

[8]

N. Uraltseva, Solvability of the capillary problem, Vestnik Leningrad. Univ., 19 (1973), 54-64,152.

show all references

References:
[1]

C. Gerhardt, Global regularity of the solutions to the capillarity problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 3 (1976), 157-175.

[2]

G. Lieberman, Gradient estimates for capillary-type problems via the maximum principle, Commun. Partial Diff. Equations, 13 (1988), 33-59. doi: 10.1080/03605308808820537.

[3]

F. Morabito, Higher genus capillary surfaces in the unit ball of $\mathbb{R}^3$ Boundary Value Problems 2014 (2014), 23pp. doi: 10.1186/1687-2770-2014-130.

[4]

F. Morabito, Singly periodic minimal surfaces in a solid cylinder of $\mathbb{R}^3$, Discrete Continuous Dynamical Systems, 35 (2015), 4987-5001. doi: 10.3934/dcds.2015.35.4987.

[5]

F. Morabito, Free boundaries surfaces and Saddle Tower minimal surfaces in ${\mathbb S}^2 × \mathbb{R}$, Journal of Mathematical Analysis and Applications, 443 (2016), 478-525. doi: 10.1016/j.jmaa.2016.05.006.

[6]

L. Simon and J. Spruck, Existence and regularity of a capillary surface with prescribed contact angle, Arch. Rational Mech. Anal., 61 (1976), 19-34. doi: 10.1007/BF00251860.

[7]

J. Spruck, On the existence of a capillary surface with prescribed contact angle, Comm. Pure Appl. Math., 28 (1975), 189-200. doi: 10.1002/cpa.3160280202.

[8]

N. Uraltseva, Solvability of the capillary problem, Vestnik Leningrad. Univ., 19 (1973), 54-64,152.

[1]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[2]

Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure & Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645

[3]

Antonio DeSimone, Natalie Grunewald, Felix Otto. A new model for contact angle hysteresis. Networks & Heterogeneous Media, 2007, 2 (2) : 211-225. doi: 10.3934/nhm.2007.2.211

[4]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[5]

Xiao-Ping Wang, Xianmin Xu. A dynamic theory for contact angle hysteresis on chemically rough boundary. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1061-1073. doi: 10.3934/dcds.2017044

[6]

Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[7]

Kristoffer Varholm. Solitary gravity-capillary water waves with point vortices. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3927-3959. doi: 10.3934/dcds.2016.36.3927

[8]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[9]

Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979

[10]

Antonio Garcia. Transition tori near an elliptic-fixed point. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 381-392. doi: 10.3934/dcds.2000.6.381

[11]

Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017

[12]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[13]

Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623

[14]

Marta García-Huidobro, Raul Manásevich. A three point boundary value problem containing the operator. Conference Publications, 2003, 2003 (Special) : 313-319. doi: 10.3934/proc.2003.2003.313

[15]

Giuseppe Da Prato. Schauder estimates for some perturbation of an infinite dimensional Ornstein--Uhlenbeck operator. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 637-647. doi: 10.3934/dcdss.2013.6.637

[16]

Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248

[17]

Mark S. Gockenbach, Akhtar A. Khan. Identification of Lamé parameters in linear elasticity: a fixed point approach. Journal of Industrial & Management Optimization, 2005, 1 (4) : 487-497. doi: 10.3934/jimo.2005.1.487

[18]

Grzegorz Graff, Piotr Nowak-Przygodzki. Fixed point indices of iterations of $C^1$ maps in $R^3$. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 843-856. doi: 10.3934/dcds.2006.16.843

[19]

Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, Sandro Vaienti. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 793-806. doi: 10.3934/dcds.2015.35.793

[20]

Hans Koch. A renormalization group fixed point associated with the breakup of golden invariant tori. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 881-909. doi: 10.3934/dcds.2004.11.881

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (12)
  • HTML views (16)
  • Cited by (0)

Other articles
by authors

[Back to Top]