January 2018, 38(1): 169-186. doi: 10.3934/dcds.2018008

Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic

1. 

Center for Mathematical Challenges, Korea Institute For Advanced Study, Seoul 02455, Korea

2. 

Department of Mathematical Sciences, Seoul National University, Seoul 08826, Korea

* Corresponding author: Seonhee Lim

Received  September 2016 Revised  July 2017 Published  September 2017

Fund Project: The second author is supported by Samsung Science and Technology Foundation under Project No. SSTF-BA1601-03 and is an associate member of KIAS.

For a local field K of formal Laurent series and its ring Z of polynomials, we prove a pointwise equidistribution with an error rate of each H-orbit in SL(d, K)/SL(d, Z) for a certain proper subgroup H of a horospherical group, extending a work of Kleinbock-Shi-Weiss.

We obtain an asymptotic formula for the number of integral solutions to the Diophantine inequalities with weights, generalizing a result of Dodson-Kristensen-Levesley. This result enables us to show pointwise equidistribution for unbounded functions of class Cα.

Citation: Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 169-186. doi: 10.3934/dcds.2018008
References:
[1]

J. AthreyaA. Ghosh and A. Prasad, Ultrametric logarithm laws Ⅱ, Monatsh Math., 167 (2012), 333-356. doi: 10.1007/s00605-012-0376-y.

[2]

J. AthreyaA. Parrish and J. Tseng, Ergodic theory and Diophantine approximation for linear forms and translation surfaces and linear forms, Nonlinearity, 29 (2016), 2173-2190. doi: 10.1088/0951-7715/29/8/2173.

[3]

M. DodsonS. Kristensen and J. Levesley, A quantitative Khintchine-Groshev type theorem over a field of formal series, Indag. Math. (N.S), 16 (2005), 171-177. doi: 10.1016/S0019-3577(05)80020-5.

[4]

M. Einsiedler, G. Margulis, A. Mohammadi and A. Venkatesh, Effective equidistribution and property (τ), preprint, arXiv: 1503.05884.

[5]

A. EskinG. Margulis and S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Annals of Mathematics, 147 (1998), 93-141. doi: 10.2307/120984.

[6]

A. Ghosh, Metric Diophantine approximation over a local field of positive characteristic, J. Number Theory, 124 (2007), 454-469. doi: 10.1016/j.jnt.2006.10.009.

[7]

D. Kleinbock and G. Margulis, On effective equidistribution of expanding translates of certain orbits in the space of lattices, in Number Theory, Analysis and Geometry, Springer, New York, 2012,385–396.

[8]

D. KleinbockR. Shi and B. Weiss, Pointwise equidistribution with an error rate and with respect to unbounded functions, Math. Ann., 367 (2017), 857-879. doi: 10.1007/s00208-016-1404-3.

[9]

D. KleinbockR. Shi and G. Tomanov, s-adic version of Minkowskis geometry of numbers and Mahlers compactness criterion, J. Number Theory, 174 (2017), 150-163. doi: 10.1016/j.jnt.2016.10.016.

[10]

D. Kleinbock and G. Tomanov, Flows on s-arithmetic homogeneous spaces and applications to metric Diophantine approximation, Coom. Math. Helv., 82 (2007), 519-581. doi: 10.4171/CMH/102.

[11]

A. Mohammadi, Measures invariant under horospherical subgroups in positive characteristic, J. Mod. Dynamics, 5 (2011), 237-254. doi: 10.3934/jmd.2011.5.237.

[12]

M. Morishita, A mean value theorem in adele geometry, Algebraic number theory and Fermat’s problem, Sūrikaisekikenkyūsho Kkyōroku, (Japanese) (1995), 1-11.

[13]

H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J., 113 (2002), 133-192. doi: 10.1215/S0012-7094-02-11314-3.

[14]

M. Rosen, Number Theory in Function Fields, Springer-Verlag, New York, 2002.

[15]

R. Rühr, Some Applications of Effective Unipotent Dynamics, Ph. D. Thesis, ETH Zurich, 2015.

[16]

N. Shah, Limit distributions of expanding translates of certain orbits on homogeneous spaces, Proc. Indian Acad. Sci. (Math. Sci.), 106 (1996), 105-125. doi: 10.1007/BF02837164.

[17]

R. Shi, Expanding cone and applications to homogeneous dynamics, preprint, arXiv: 1510.05256.

[18]

C. Siegel, Amean value theorem in geometry of numbers, Annals of Mathematics, 46 (1945), 340-347. doi: 10.2307/1969027.

[19]

V. Sprindzuk, Metric Theory of Diophantine Approximations, V. H. Winston & Sons, Washington, DC, 1979.

[20]

G. Tomanov, Orbits on homogeneous spaces of arithmetic origin and approximations, Adv. studies in Pure Math., 26 (2000), 265-297.

show all references

References:
[1]

J. AthreyaA. Ghosh and A. Prasad, Ultrametric logarithm laws Ⅱ, Monatsh Math., 167 (2012), 333-356. doi: 10.1007/s00605-012-0376-y.

[2]

J. AthreyaA. Parrish and J. Tseng, Ergodic theory and Diophantine approximation for linear forms and translation surfaces and linear forms, Nonlinearity, 29 (2016), 2173-2190. doi: 10.1088/0951-7715/29/8/2173.

[3]

M. DodsonS. Kristensen and J. Levesley, A quantitative Khintchine-Groshev type theorem over a field of formal series, Indag. Math. (N.S), 16 (2005), 171-177. doi: 10.1016/S0019-3577(05)80020-5.

[4]

M. Einsiedler, G. Margulis, A. Mohammadi and A. Venkatesh, Effective equidistribution and property (τ), preprint, arXiv: 1503.05884.

[5]

A. EskinG. Margulis and S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Annals of Mathematics, 147 (1998), 93-141. doi: 10.2307/120984.

[6]

A. Ghosh, Metric Diophantine approximation over a local field of positive characteristic, J. Number Theory, 124 (2007), 454-469. doi: 10.1016/j.jnt.2006.10.009.

[7]

D. Kleinbock and G. Margulis, On effective equidistribution of expanding translates of certain orbits in the space of lattices, in Number Theory, Analysis and Geometry, Springer, New York, 2012,385–396.

[8]

D. KleinbockR. Shi and B. Weiss, Pointwise equidistribution with an error rate and with respect to unbounded functions, Math. Ann., 367 (2017), 857-879. doi: 10.1007/s00208-016-1404-3.

[9]

D. KleinbockR. Shi and G. Tomanov, s-adic version of Minkowskis geometry of numbers and Mahlers compactness criterion, J. Number Theory, 174 (2017), 150-163. doi: 10.1016/j.jnt.2016.10.016.

[10]

D. Kleinbock and G. Tomanov, Flows on s-arithmetic homogeneous spaces and applications to metric Diophantine approximation, Coom. Math. Helv., 82 (2007), 519-581. doi: 10.4171/CMH/102.

[11]

A. Mohammadi, Measures invariant under horospherical subgroups in positive characteristic, J. Mod. Dynamics, 5 (2011), 237-254. doi: 10.3934/jmd.2011.5.237.

[12]

M. Morishita, A mean value theorem in adele geometry, Algebraic number theory and Fermat’s problem, Sūrikaisekikenkyūsho Kkyōroku, (Japanese) (1995), 1-11.

[13]

H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J., 113 (2002), 133-192. doi: 10.1215/S0012-7094-02-11314-3.

[14]

M. Rosen, Number Theory in Function Fields, Springer-Verlag, New York, 2002.

[15]

R. Rühr, Some Applications of Effective Unipotent Dynamics, Ph. D. Thesis, ETH Zurich, 2015.

[16]

N. Shah, Limit distributions of expanding translates of certain orbits on homogeneous spaces, Proc. Indian Acad. Sci. (Math. Sci.), 106 (1996), 105-125. doi: 10.1007/BF02837164.

[17]

R. Shi, Expanding cone and applications to homogeneous dynamics, preprint, arXiv: 1510.05256.

[18]

C. Siegel, Amean value theorem in geometry of numbers, Annals of Mathematics, 46 (1945), 340-347. doi: 10.2307/1969027.

[19]

V. Sprindzuk, Metric Theory of Diophantine Approximations, V. H. Winston & Sons, Washington, DC, 1979.

[20]

G. Tomanov, Orbits on homogeneous spaces of arithmetic origin and approximations, Adv. studies in Pure Math., 26 (2000), 265-297.

[1]

Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43

[2]

Wenyu Pan. Effective equidistribution of circles in the limit sets of Kleinian groups. Journal of Modern Dynamics, 2017, 11: 189-217. doi: 10.3934/jmd.2017009

[3]

Shrikrishna G. Dani. Simultaneous diophantine approximation with quadratic and linear forms. Journal of Modern Dynamics, 2008, 2 (1) : 129-138. doi: 10.3934/jmd.2008.2.129

[4]

Philippe Chartier, Ander Murua, Jesús María Sanz-Serna. A formal series approach to averaging: Exponentially small error estimates. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3009-3027. doi: 10.3934/dcds.2012.32.3009

[5]

David W. Pravica, Michael J. Spurr. Unique summing of formal power series solutions to advanced and delayed differential equations. Conference Publications, 2005, 2005 (Special) : 730-737. doi: 10.3934/proc.2005.2005.730

[6]

Kathryn Dabbs, Michael Kelly, Han Li. Effective equidistribution of translates of maximal horospherical measures in the space of lattices. Journal of Modern Dynamics, 2016, 10: 229-254. doi: 10.3934/jmd.2016.10.229

[7]

Tomasz Kaczynski, Marian Mrozek, Thomas Wanner. Towards a formal tie between combinatorial and classical vector field dynamics. Journal of Computational Dynamics, 2016, 3 (1) : 17-50. doi: 10.3934/jcd.2016002

[8]

Cristina Stoica. An approximation theorem in classical mechanics. Journal of Geometric Mechanics, 2016, 8 (3) : 359-374. doi: 10.3934/jgm.2016011

[9]

Cecilia González-Tokman, Anthony Quas. A concise proof of the multiplicative ergodic theorem on Banach spaces. Journal of Modern Dynamics, 2015, 9: 237-255. doi: 10.3934/jmd.2015.9.237

[10]

Z. K. Eshkuvatov, M. Kammuji, Bachok M. Taib, N. M. A. Nik Long. Effective approximation method for solving linear Fredholm-Volterra integral equations. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 77-88. doi: 10.3934/naco.2017004

[11]

Alex Blumenthal. A volume-based approach to the multiplicative ergodic theorem on Banach spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2377-2403. doi: 10.3934/dcds.2016.36.2377

[12]

Luciana A. Alves, Luiz A. B. San Martin. Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1247-1273. doi: 10.3934/dcds.2013.33.1247

[13]

Yuri Kifer. Ergodic theorems for nonconventional arrays and an extension of the Szemerédi theorem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2687-2716. doi: 10.3934/dcds.2018113

[14]

Betseygail Rand, Lorenzo Sadun. An approximation theorem for maps between tiling spaces. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 323-326. doi: 10.3934/dcds.2011.29.323

[15]

Bassam Fayad, Zhiyuan Zhang. An effective version of Katok's horseshoe theorem for conservative C2 surface diffeomorphisms. Journal of Modern Dynamics, 2017, 11: 425-445. doi: 10.3934/jmd.2017017

[16]

Yves Derriennic. Some aspects of recent works on limit theorems in ergodic theory with special emphasis on the "central limit theorem''. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 143-158. doi: 10.3934/dcds.2006.15.143

[17]

Gui-Qiang Chen, Bo Su. A viscous approximation for a multidimensional unsteady Euler flow: Existence theorem for potential flow. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1587-1606. doi: 10.3934/dcds.2003.9.1587

[18]

Fabio Camilli, Francisco Silva. A semi-discrete approximation for a first order mean field game problem. Networks & Heterogeneous Media, 2012, 7 (2) : 263-277. doi: 10.3934/nhm.2012.7.263

[19]

Narcisse Batangouna, Morgan Pierre. Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system. Communications on Pure & Applied Analysis, 2018, 17 (1) : 1-19. doi: 10.3934/cpaa.2018001

[20]

Oliver Jenkinson. Ergodic Optimization. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 197-224. doi: 10.3934/dcds.2006.15.197

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (20)
  • HTML views (29)
  • Cited by (0)

Other articles
by authors

[Back to Top]