• Previous Article
    Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption
  • DCDS Home
  • This Issue
  • Next Article
    Interactions, specifications, DLR probabilities and the Ruelle operator in the one-dimensional lattice
2017, 37(12): 6123-6138. doi: 10.3934/dcds.2017263

Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients

a. 

College of Science, National University of Defense Technology Changsha, Hunan, China

b. 

School of Information Engineering, Nanchang Institute of Technology Nanchang, Jiangxi, China

* Corresponding author: Xiao Wang

Received  October 2016 Revised  July 2017 Published  August 2017

It is extremely difficult to establish the existence of almost periodic solutions for delay differential equations via methods that need the compactness conditions such as Schauder's fixed point theorem. To overcome this difficulty, in this paper, we employ a novel technique to construct a contraction mapping, which enables us to establish the existence of almost periodic solution for a delay differential equation system with time-varying coefficients. When the system's coefficients are periodic, coincide degree theory is used to establish the existence of periodic solutions. Global stability results are also obtained by the method of Liapunov functionals.

Citation: Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263
References:
[1]

G. Abramson, S. Goncalves and M. F. C. Gomes, Epidemic oscillations: Interaction between delays and seasonality, arXiv preprint, arXiv: 1303. 3779,2013-arxiv. org

[2]

I. Area, J. Losada and F. Nda$\ddot{i}$rou, et al. Mathematical Modeling of 2014 Ebola Outbreak Mathematical Methods in the Applied Sciences, 2015.

[3]

J. Arino, S. Portet, Epidemiological implications of mobility between a large urban centre and smaller satellite cities, J. Math. Biol., 71 (2015), 1243-1265. doi: 10.1007/s00285-014-0854-z.

[4]

L. Berezansky, E. Braverman, Mackey-Glass equation with variable coefficients, Comput. Math. Appl., 51 (2006), 1-16. doi: 10.1016/j.camwa.2005.09.001.

[5]

F. Brauer, P. van den Driessche, Models for transmission of disease with immigration of infectives, Math. Biosci., 171 (2001), 143-154. doi: 10.1016/S0025-5564(01)00057-8.

[6]

F. Brauer, P. van den Driessche, L. Wang, Oscillations in a patchy environment disease model, Mathematical Biosciences, 215 (2008), 1-10. doi: 10.1016/j.mbs.2008.05.001.

[7]

W. A. Coppel, Dichotomies in stability theory, Lecture Notes in Mathemaics 629, Springer-Verlag, Berlin, 1978.

[8]

F. Cordova-Lepe, G. Robledo, M. Pinto, E. Gonzalez-Olivares, Modeling pulse infectious events irrupting into a controlled context: A SIS disease with almost periodic parameters, Appl. Math. Model., 36 (2012), 1323-1337. doi: 10.1016/j.apm.2011.07.085.

[9]

H. S. Ding, Q. L. Liu, J. J. Nieto, Existence of positive almost periodic solutions to a class of hematopoiesis model, Applied Mathematical Modelling, 40 (2016), 3289-3297. doi: 10.1016/j.apm.2015.10.020.

[10]

A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Mathematics, 377, Springer-Verlag, New York, 1974.

[11]

D. Fisman, E. Khoo and A. TuiteVersion, Early Epidemic Dynamics of the West African 2014 Ebola Outbreak: Estimates Derived with a Simple Two-parameter Model PLoS Curr. 2014.

[12]

R. K. Gaines and J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer-Verlag, Berlin, 1977.

[13]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics Kluwer Academic Press, Boston, 1992.

[14]

K. Gopalsamy, P. Weng, Global attractivity and level crossing in model of Hematopoiesis, Bulletin of the Institute of Mathematics, Academia Sinica, 22 (1994), 341-360.

[15]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations Springer-Verlag, New York, 1993.

[16]

C. Y. He, Almost periodic differential equations(In Chinese) Higher Education Press, Beijing, 1992.

[17]

Y. H. Hsieh, P. van den Driessche, L. Wang, Impact of travel between patches for spatial spread of disease, Bull. Math. Biol., 69 (2007), 1355-1375. doi: 10.1007/s11538-006-9169-6.

[18]

Z-W. Jia, G. Tang, Z. Jin, Modeling the impact of immigration on the epidemiology of tuberculosis, Theor. Popul. Biol., 73 (2008), 437-448. doi: 10.1016/j.tpb.2007.12.007.

[19]

W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700-721.

[20]

L. Li, Y. Bai, Z. Jin, Periodic solutions of an epidemic model with saturated treatment, Nonlinear Dyn., 76 (2014), 1099-1108. doi: 10.1007/s11071-013-1193-0.

[21]

J. D. Murray, Mathematical Biology, I: An Introduction, Springer, 2002.

[22]

R. P. Sigdel, C. C. McCluskey, Disease dynamics for the hometown of migrant workers, Math. Biosci. Eng., 11 (2014), 1175-1180. doi: 10.3934/mbe.2014.11.1175.

[23]

L. Stone, R. Olinky, A. Huppert, Seasonal dynamics of recurrent epidemics, Nature, 446 (2007), 533-536. doi: 10.1038/nature05638.

[24]

M. Strand, X. Wang, X. Duan, Presence and awareness of infectious disease among Chinese migrant workers, Int'l Quarterly of Community Health Education, 26 (2007), 379-395.

[25]

The National Migrant Workers Monitoring Report, 2017, http://www.stats.gov.cn/.

[26]

B. Wang, X. Zhao, Basic reproduction ratios for almost periodic compartmental epidemic models, J Dyn. Diff. Equat., 25 (2013), 535-562. doi: 10.1007/s10884-013-9304-7.

[27]

L. Wang, X. Wang, Influence of temporary migration on the transmission of infectious diseases in a migrants' home village, J. Theoret. Biol., 300 (2012), 100-109. doi: 10.1016/j.jtbi.2012.01.004.

[28]

X. Wang, H. Zhang, A new approach to the existence, nonexistence and uniqueness of positive almost periodic solution for a model of Hematopoiesis, Nonlinear Analysis: Real World Applications, 11 (2010), 60-66. doi: 10.1016/j.nonrwa.2008.10.015.

[29]

M. E. Wilson, Travel and the emergence of infectious diseases, Emerg. Infect. Dis., 3 (1996), 51-66. doi: 10.1300/J096v03n01_05.

[30]

Y. Xiao, J. C. Beier, R. S. Cantrell, C. Cosner, L. D. DeAngelis and S. Ruan, Modelling the effects of seasonality and socioeconomic impact on the transmission of rift valley fever virus PLOS Neglected Tropical Diseases, 9 (2015), e3388.

[31]

R. Xu, D. C. Ekiert1, J. C. Krause, R. Hai, J. E. Crowe Jr, I. A. Wilson, Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus, Science, 328 (2010), 357-360. doi: 10.1126/science.1186430.

[32]

Z. Yuan, L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates, Nonlinear Analysis: Real World Applications, 11 (2010), 995-1004. doi: 10.1016/j.nonrwa.2009.01.040.

[33]

X. Zhou, J. Cui, Threshold dynamics for a cholera epidemic model with periodic transmission rate, Appl. Math. Model., 37 (2013), 3093-3101. doi: 10.1016/j.apm.2012.07.044.

[34]

Y. Zhou, Z. Ma, F. Brauer, Discrete epidemic model for SARS transmission and control in China, Math. Comput. Model., 40 (2004), 1491-1506. doi: 10.1016/j.mcm.2005.01.007.

show all references

References:
[1]

G. Abramson, S. Goncalves and M. F. C. Gomes, Epidemic oscillations: Interaction between delays and seasonality, arXiv preprint, arXiv: 1303. 3779,2013-arxiv. org

[2]

I. Area, J. Losada and F. Nda$\ddot{i}$rou, et al. Mathematical Modeling of 2014 Ebola Outbreak Mathematical Methods in the Applied Sciences, 2015.

[3]

J. Arino, S. Portet, Epidemiological implications of mobility between a large urban centre and smaller satellite cities, J. Math. Biol., 71 (2015), 1243-1265. doi: 10.1007/s00285-014-0854-z.

[4]

L. Berezansky, E. Braverman, Mackey-Glass equation with variable coefficients, Comput. Math. Appl., 51 (2006), 1-16. doi: 10.1016/j.camwa.2005.09.001.

[5]

F. Brauer, P. van den Driessche, Models for transmission of disease with immigration of infectives, Math. Biosci., 171 (2001), 143-154. doi: 10.1016/S0025-5564(01)00057-8.

[6]

F. Brauer, P. van den Driessche, L. Wang, Oscillations in a patchy environment disease model, Mathematical Biosciences, 215 (2008), 1-10. doi: 10.1016/j.mbs.2008.05.001.

[7]

W. A. Coppel, Dichotomies in stability theory, Lecture Notes in Mathemaics 629, Springer-Verlag, Berlin, 1978.

[8]

F. Cordova-Lepe, G. Robledo, M. Pinto, E. Gonzalez-Olivares, Modeling pulse infectious events irrupting into a controlled context: A SIS disease with almost periodic parameters, Appl. Math. Model., 36 (2012), 1323-1337. doi: 10.1016/j.apm.2011.07.085.

[9]

H. S. Ding, Q. L. Liu, J. J. Nieto, Existence of positive almost periodic solutions to a class of hematopoiesis model, Applied Mathematical Modelling, 40 (2016), 3289-3297. doi: 10.1016/j.apm.2015.10.020.

[10]

A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Mathematics, 377, Springer-Verlag, New York, 1974.

[11]

D. Fisman, E. Khoo and A. TuiteVersion, Early Epidemic Dynamics of the West African 2014 Ebola Outbreak: Estimates Derived with a Simple Two-parameter Model PLoS Curr. 2014.

[12]

R. K. Gaines and J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer-Verlag, Berlin, 1977.

[13]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics Kluwer Academic Press, Boston, 1992.

[14]

K. Gopalsamy, P. Weng, Global attractivity and level crossing in model of Hematopoiesis, Bulletin of the Institute of Mathematics, Academia Sinica, 22 (1994), 341-360.

[15]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations Springer-Verlag, New York, 1993.

[16]

C. Y. He, Almost periodic differential equations(In Chinese) Higher Education Press, Beijing, 1992.

[17]

Y. H. Hsieh, P. van den Driessche, L. Wang, Impact of travel between patches for spatial spread of disease, Bull. Math. Biol., 69 (2007), 1355-1375. doi: 10.1007/s11538-006-9169-6.

[18]

Z-W. Jia, G. Tang, Z. Jin, Modeling the impact of immigration on the epidemiology of tuberculosis, Theor. Popul. Biol., 73 (2008), 437-448. doi: 10.1016/j.tpb.2007.12.007.

[19]

W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700-721.

[20]

L. Li, Y. Bai, Z. Jin, Periodic solutions of an epidemic model with saturated treatment, Nonlinear Dyn., 76 (2014), 1099-1108. doi: 10.1007/s11071-013-1193-0.

[21]

J. D. Murray, Mathematical Biology, I: An Introduction, Springer, 2002.

[22]

R. P. Sigdel, C. C. McCluskey, Disease dynamics for the hometown of migrant workers, Math. Biosci. Eng., 11 (2014), 1175-1180. doi: 10.3934/mbe.2014.11.1175.

[23]

L. Stone, R. Olinky, A. Huppert, Seasonal dynamics of recurrent epidemics, Nature, 446 (2007), 533-536. doi: 10.1038/nature05638.

[24]

M. Strand, X. Wang, X. Duan, Presence and awareness of infectious disease among Chinese migrant workers, Int'l Quarterly of Community Health Education, 26 (2007), 379-395.

[25]

The National Migrant Workers Monitoring Report, 2017, http://www.stats.gov.cn/.

[26]

B. Wang, X. Zhao, Basic reproduction ratios for almost periodic compartmental epidemic models, J Dyn. Diff. Equat., 25 (2013), 535-562. doi: 10.1007/s10884-013-9304-7.

[27]

L. Wang, X. Wang, Influence of temporary migration on the transmission of infectious diseases in a migrants' home village, J. Theoret. Biol., 300 (2012), 100-109. doi: 10.1016/j.jtbi.2012.01.004.

[28]

X. Wang, H. Zhang, A new approach to the existence, nonexistence and uniqueness of positive almost periodic solution for a model of Hematopoiesis, Nonlinear Analysis: Real World Applications, 11 (2010), 60-66. doi: 10.1016/j.nonrwa.2008.10.015.

[29]

M. E. Wilson, Travel and the emergence of infectious diseases, Emerg. Infect. Dis., 3 (1996), 51-66. doi: 10.1300/J096v03n01_05.

[30]

Y. Xiao, J. C. Beier, R. S. Cantrell, C. Cosner, L. D. DeAngelis and S. Ruan, Modelling the effects of seasonality and socioeconomic impact on the transmission of rift valley fever virus PLOS Neglected Tropical Diseases, 9 (2015), e3388.

[31]

R. Xu, D. C. Ekiert1, J. C. Krause, R. Hai, J. E. Crowe Jr, I. A. Wilson, Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus, Science, 328 (2010), 357-360. doi: 10.1126/science.1186430.

[32]

Z. Yuan, L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates, Nonlinear Analysis: Real World Applications, 11 (2010), 995-1004. doi: 10.1016/j.nonrwa.2009.01.040.

[33]

X. Zhou, J. Cui, Threshold dynamics for a cholera epidemic model with periodic transmission rate, Appl. Math. Model., 37 (2013), 3093-3101. doi: 10.1016/j.apm.2012.07.044.

[34]

Y. Zhou, Z. Ma, F. Brauer, Discrete epidemic model for SARS transmission and control in China, Math. Comput. Model., 40 (2004), 1491-1506. doi: 10.1016/j.mcm.2005.01.007.

Figure 1.  Distributions of holidays in China for the period of 2012-2016.
Figure 2.  Numerical solutions of (1.2) with $\lambda_0=0.5$, $\lambda_1=0.2$, $\beta_0=0.0003$, $\beta_1=0.01$, $m_0=0.4$, $m_1=0.01$, $\omega_1=\frac{\pi}{3.2}$, $\omega_2=1$, $\mu_S=\mu_R=\frac{1}{72}$, $\gamma=0.05$, $\delta=\frac{1}{50}$, $\tau=0.78$, $p=\frac{2\tau}{100+2\tau}$. Three sets of initial conditions IV1, IV2 and IV3 are used
Figure 3.  Numerical solutions of (1.2) with the same parameter values as in Figure 2 except that $\lambda_0=1.5$ and $m_1=0.2$
Figure 4.  The numerical solution to system (1.2) with $\lambda_0=0.5$, $\lambda_1=0.2$, $\beta_0=0.001$, $\beta_1=0.01$, $m_0=0.4$, $m_1=0.2, $ $\omega_1=1$, $\omega_2=0$, $\mu_S=\mu_R=\frac{1}{72}$, $\gamma=0.05$, $\delta=\frac{1}{50}$, $\tau=0.78$ and $p=\frac{2\tau}{100+2\tau}$ and the initial conditions as $I(0)=2$, $S(\theta)=5(1+0.1\cos(\omega_1\theta))$ and $R(\theta)=1$ for $\theta\in[-\tau, 0]$
Figure 5.  Numerical solutions of (1.2) with $\lambda_0=0.5$, $\lambda_1=0.2$, $\beta_0=0.001$, $\beta_1=0.01$, $m_0=0.3$, $m_1=0.3$, $\omega_1=1$, $\omega_2=0$, $\mu_S=\mu_R=\frac{1}{72}$, $\gamma=0.05$, $\delta=\frac{1}{50}$, $\tau=0.78$ and $p=\frac{2\tau}{100+2\tau}$
[1]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[2]

Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301

[3]

Saroj Panigrahi, Rakhee Basu. Oscillation results for second order nonlinear neutral differential equations with delay. Conference Publications, 2015, 2015 (special) : 906-912. doi: 10.3934/proc.2015.0906

[4]

Hongren Wang, Xue Yang, Yong Li, Xiaoyue Li. LaSalle type Stationary Oscillation Theorems for Affine-Periodic Systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2907-2921. doi: 10.3934/dcdsb.2017156

[5]

P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220

[6]

Yuri V. Rogovchenko, Fatoş Tuncay. Interval oscillation of a second order nonlinear differential equation with a damping term. Conference Publications, 2007, 2007 (Special) : 883-891. doi: 10.3934/proc.2007.2007.883

[7]

Marissa Condon, Alfredo Deaño, Arieh Iserles. On systems of differential equations with extrinsic oscillation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1345-1367. doi: 10.3934/dcds.2010.28.1345

[8]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[9]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[10]

Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems . Communications on Pure & Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75

[11]

T. Candan, R.S. Dahiya. Oscillation of mixed neutral differential equations with forcing term. Conference Publications, 2003, 2003 (Special) : 167-172. doi: 10.3934/proc.2003.2003.167

[12]

Yongkun Li, Pan Wang. Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 463-473. doi: 10.3934/dcdss.2017022

[13]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[14]

Tomás Caraballo, David Cheban. Almost periodic and almost automorphic solutions of linear differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1857-1882. doi: 10.3934/dcds.2013.33.1857

[15]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[16]

S. Huff, G. Olumolode, N. Pennington, A. Peterson. Oscillation of an Euler-Cauchy dynamic equation. Conference Publications, 2003, 2003 (Special) : 423-431. doi: 10.3934/proc.2003.2003.423

[17]

Jan Sieber, Matthias Wolfrum, Mark Lichtner, Serhiy Yanchuk. On the stability of periodic orbits in delay equations with large delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3109-3134. doi: 10.3934/dcds.2013.33.3109

[18]

RazIye Mert, A. Zafer. A necessary and sufficient condition for oscillation of second order sublinear delay dynamic equations. Conference Publications, 2011, 2011 (Special) : 1061-1067. doi: 10.3934/proc.2011.2011.1061

[19]

Ming He, Xiaoyun Ma, Weijiang Zhang. Oscillation death in systems of oscillators with transferable coupling and time-delay. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 737-745. doi: 10.3934/dcds.2001.7.737

[20]

Teresa Faria, José J. Oliveira. On stability for impulsive delay differential equations and application to a periodic Lasota-Wazewska model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2451-2472. doi: 10.3934/dcdsb.2016055

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (3)
  • HTML views (1)
  • Cited by (0)

Other articles
by authors

[Back to Top]