- Previous Article
- DCDS Home
- This Issue
-
Next Article
The 3D liquid crystal system with Cannone type initial data and large vertical velocity
Eulerian dynamics with a commutator forcing Ⅱ: Flocking
1. | Department of Mathematics, Statistics, and Computer Science, M/C 249, University of Illinois, Chicago, IL 60607, USA |
2. | Center for Scientific Computation and Mathematical Modeling (CSCAMM), Department of Mathematics, Institute for Physical Sciences and Technology, University of Maryland, College Park, MD 20742-4015, USA |
3. | Current address: Institute for Theoretical Studies (ITS), ETH-Zurich, Clausiusstrasse 47, CH-8092 Zurich, Switzerland |
We continue our study of one-dimensional class of Euler equations, introduced in [
In this paper we quantify the large-time behavior of such systems in terms of fast flocking, for two prototypical sub-classes of kernels: bounded positive $φ$'s, and singular $φ(r) = r^{-(1+α)}$ of order $α∈ [1, 2)$ associated with the action of the fractional Laplacian ${\mathcal L}_φ=-(-\partial_{xx})^{α/2}$. Specifically, we prove fast velocity alignment as the velocity $u(·, t)$ approaches a constant state, $u \to \bar{u}$, with exponentially decaying slope and curvature bounds $|{u_x}( \cdot ,t){|_\infty } + |{u_{xx}}( \cdot ,t){|_\infty }\lesssim{e^{ - \delta t}}$. The alignment is accompanied by exponentially fast flocking of the density towards a fixed traveling state $ρ(·, t) -{ρ_{∞}}(x -\bar{u} t) \to 0$.
References:
[1] |
J.A. Carrillo, Y.-P. Choi, E. Tadmor and C. Tan,
Critical thresholds in 1D Euler equations with non-local forces, Math. Models Methods Appl. Sci., 26 (2016), 185-206.
doi: 10.1142/S0218202516500068. |
[2] |
J. Carrillo, Y.-P. Choi and S. Perez,
A review on attractive-repulsive hydrodynamics for consensus in collective behavior, Active Particles, Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET), (2017), 259-298.
doi: 10.1007/978-3-319-49996-3_7. |
[3] |
P. Constantin and V. Vicol,
Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal., 22 (2012), 1289-1321.
doi: 10.1007/s00039-012-0172-9. |
[4] |
T. Do, A. Kiselev, L. Ryzhik and C. Tan, Global regularity for the fractional Euler alignment system, arXiv: 1701.05155. |
[5] |
S.-Y. Ha and E. Tadmor,
From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models, (2008), 415-435.
doi: 10.3934/krm.2008.1.415. |
[6] |
C. Imbert, R. Shvydkoy and F. Vigneron,
Global well-posedness of a non-local Burgers equation: The periodic case, Annales mathématiques de Toulouse, 25 (2016), 723-758.
doi: 10.5802/afst.1509. |
[7] |
A. Kiselev, F. Nazarov and A. Volberg,
Global well-posedness for the critical 2{D} dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453.
doi: 10.1007/s00222-006-0020-3. |
[8] |
S. Motsch and E. Tadmor,
A new model for self-organized dynamics and its flocking behavior, J. Stat. Physics, 144 (2011), 923-947.
doi: 10.1007/s10955-011-0285-9. |
[9] |
S. Motsch and E. Tadmor,
Heterophilious dynamics enhances consensus, SIAM Review, 56 (2014), 577-621.
doi: 10.1137/120901866. |
[10] |
R.W. Schwab and L. Silvestre,
Regularity for parabolic integro-differential equations with very irregular kernels, Anal. PDE, 9 (2016), 727-772.
doi: 10.2140/apde.2016.9.727. |
[11] |
R. Shvydkoy and E. Tadmor,
Eulerian dynamics with a commutator forcing, Trans. Math. and Appl., (2017), 1-26.
doi: 10.1093/imatrm/tnx001. |
[12] |
R. Shvydkoy and E. Tadmor, Eulerian dynamics with a commutator forcing Ⅲ: Fractional diffusion of order 0 < α < 1, arXiv: 1706.08246. |
[13] |
E. Tadmor and C. Tan, Critical thresholds in flocking hydrodynamics with non-local alignment, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130401, 22pp.
doi: 10.1098/rsta.2013.0401. |
show all references
References:
[1] |
J.A. Carrillo, Y.-P. Choi, E. Tadmor and C. Tan,
Critical thresholds in 1D Euler equations with non-local forces, Math. Models Methods Appl. Sci., 26 (2016), 185-206.
doi: 10.1142/S0218202516500068. |
[2] |
J. Carrillo, Y.-P. Choi and S. Perez,
A review on attractive-repulsive hydrodynamics for consensus in collective behavior, Active Particles, Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET), (2017), 259-298.
doi: 10.1007/978-3-319-49996-3_7. |
[3] |
P. Constantin and V. Vicol,
Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal., 22 (2012), 1289-1321.
doi: 10.1007/s00039-012-0172-9. |
[4] |
T. Do, A. Kiselev, L. Ryzhik and C. Tan, Global regularity for the fractional Euler alignment system, arXiv: 1701.05155. |
[5] |
S.-Y. Ha and E. Tadmor,
From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models, (2008), 415-435.
doi: 10.3934/krm.2008.1.415. |
[6] |
C. Imbert, R. Shvydkoy and F. Vigneron,
Global well-posedness of a non-local Burgers equation: The periodic case, Annales mathématiques de Toulouse, 25 (2016), 723-758.
doi: 10.5802/afst.1509. |
[7] |
A. Kiselev, F. Nazarov and A. Volberg,
Global well-posedness for the critical 2{D} dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453.
doi: 10.1007/s00222-006-0020-3. |
[8] |
S. Motsch and E. Tadmor,
A new model for self-organized dynamics and its flocking behavior, J. Stat. Physics, 144 (2011), 923-947.
doi: 10.1007/s10955-011-0285-9. |
[9] |
S. Motsch and E. Tadmor,
Heterophilious dynamics enhances consensus, SIAM Review, 56 (2014), 577-621.
doi: 10.1137/120901866. |
[10] |
R.W. Schwab and L. Silvestre,
Regularity for parabolic integro-differential equations with very irregular kernels, Anal. PDE, 9 (2016), 727-772.
doi: 10.2140/apde.2016.9.727. |
[11] |
R. Shvydkoy and E. Tadmor,
Eulerian dynamics with a commutator forcing, Trans. Math. and Appl., (2017), 1-26.
doi: 10.1093/imatrm/tnx001. |
[12] |
R. Shvydkoy and E. Tadmor, Eulerian dynamics with a commutator forcing Ⅲ: Fractional diffusion of order 0 < α < 1, arXiv: 1706.08246. |
[13] |
E. Tadmor and C. Tan, Critical thresholds in flocking hydrodynamics with non-local alignment, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130401, 22pp.
doi: 10.1098/rsta.2013.0401. |
[1] |
Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419 |
[2] |
Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062 |
[3] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[4] |
Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang. Remarks on the critical coupling strength for the Cucker-Smale model with unit speed. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2763-2793. doi: 10.3934/dcds.2018116 |
[5] |
Chiun-Chuan Chen, Seung-Yeal Ha, Xiongtao Zhang. The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements. Communications on Pure & Applied Analysis, 2018, 17 (2) : 505-538. doi: 10.3934/cpaa.2018028 |
[6] |
Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023 |
[7] |
Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang, Xiongtao Zhang. Emergent dynamics in the interactions of Cucker-Smale ensembles. Kinetic & Related Models, 2017, 10 (3) : 689-723. doi: 10.3934/krm.2017028 |
[8] |
Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control & Related Fields, 2013, 3 (4) : 447-466. doi: 10.3934/mcrf.2013.3.447 |
[9] |
Young-Pil Choi, Jan Haskovec. Cucker-Smale model with normalized communication weights and time delay. Kinetic & Related Models, 2017, 10 (4) : 1011-1033. doi: 10.3934/krm.2017040 |
[10] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[11] |
Laure Pédèches. Asymptotic properties of various stochastic cucker-smale dynamics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2731-2762. doi: 10.3934/dcds.2018115 |
[12] |
Tong Li, Hailiang Liu. Critical thresholds in a relaxation system with resonance of characteristic speeds. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 511-521. doi: 10.3934/dcds.2009.24.511 |
[13] |
Tong Li, Sunčica Čanić. Critical thresholds in a quasilinear hyperbolic model of blood flow. Networks & Heterogeneous Media, 2009, 4 (3) : 527-536. doi: 10.3934/nhm.2009.4.527 |
[14] |
Ewa Girejko, Luís Machado, Agnieszka B. Malinowska, Natália Martins. On consensus in the Cucker–Smale type model on isolated time scales. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 77-89. doi: 10.3934/dcdss.2018005 |
[15] |
Boqing Dong, Wenjuan Wang, Jiahong Wu, Hui Zhang. Global regularity results for the climate model with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-19. doi: 10.3934/dcdsb.2018102 |
[16] |
Michele Coti Zelati, Piotr Kalita. Smooth attractors for weak solutions of the SQG equation with critical dissipation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1857-1873. doi: 10.3934/dcdsb.2017110 |
[17] |
Xiaoming He, Marco Squassina, Wenming Zou. The Nehari manifold for fractional systems involving critical nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1285-1308. doi: 10.3934/cpaa.2016.15.1285 |
[18] |
Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57 |
[19] |
Hongjie Dong, Dong Li. On a generalized maximum principle for a transport-diffusion model with $\log$-modulated fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3437-3454. doi: 10.3934/dcds.2014.34.3437 |
[20] |
Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369-380. doi: 10.3934/mbe.2015007 |
2016 Impact Factor: 1.099
Tools
Metrics
Other articles
by authors
[Back to Top]