2017, 37(11): 5503-5520. doi: 10.3934/dcds.2017239

Eulerian dynamics with a commutator forcing II: Flocking

1. 

Department of Mathematics, Statistics, and Computer Science, M/C 249, University of Illinois, Chicago, IL 60607, USA

2. 

Center for Scientific Computation and Mathematical Modeling (CSCAMM), Department of Mathematics, Institute for Physical Sciences and Technology, University of Maryland, College Park, MD 20742-4015, USA, Current address: Institute for Theoretical Studies (ITS), ETH-Zurich, Clausiusstrasse 47, CH-8092 Zurich, Switzerland

* Corresponding author: Eitan Tadmor

Received  January 2017 Revised  June 2017 Published  July 2017

Fund Project: Research was supported in part by NSF grant DMS 1515705 (RS) and by NSF grants DMS16-13911, RNMS11-07444 (KI-Net) and ONR grant N00014-1512094 (ET)

We continue our study of one-dimensional class of Euler equations, introduced in [11], driven by a forcing with a commutator structure of the form $[{\mathcal L}_φ, u](ρ)$, where $u$ is the velocity field and ${\mathcal L}_φ$ belongs to a rather general class of convolution operators depending on interaction kernels $φ$.

In this paper we quantify the large-time behavior of such systems in terms of fast flocking, for two prototypical sub-classes of kernels: bounded positive $φ$'s, and singular $φ(r) = r^{-(1+α)}$ of order $α∈ [1, 2)$ associated with the action of the fractional Laplacian ${\mathcal L}_φ=-(-\partial_{xx})^{α/2}$. Specifically, we prove fast velocity alignment as the velocity $u(·, t)$ approaches a constant state, $u \to \bar{u}$, with exponentially decaying slope and curvature bounds $|{u_x}( \cdot ,t){|_\infty } + |{u_{xx}}( \cdot ,t){|_\infty }\lesssim{e^{ - \delta t}}$. The alignment is accompanied by exponentially fast flocking of the density towards a fixed traveling state $ρ(·, t) -{ρ_{∞}}(x -\bar{u} t) \to 0$.

Citation: Roman Shvydkoy, Eitan Tadmor. Eulerian dynamics with a commutator forcing II: Flocking. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5503-5520. doi: 10.3934/dcds.2017239
References:
[1]

J.A. Carrillo, Y.-P. Choi, E. Tadmor, C. Tan, Critical thresholds in 1D Euler equations with non-local forces, Math. Models Methods Appl. Sci., 26 (2016), 185-206. doi: 10.1142/S0218202516500068.

[2]

J. Carrillo, Y.-P. Choi, S. Perez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior, Active Particles, Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET), (2017), 259-298. doi: 10.1007/978-3-319-49996-3_7.

[3]

P. Constantin, V. Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal., 22 (2012), 1289-1321. doi: 10.1007/s00039-012-0172-9.

[4]

T. Do, A. Kiselev, L. Ryzhik and C. Tan, Global regularity for the fractional Euler alignment system, arXiv: 1701. 05155.

[5]

S.-Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models, (2008), 415-435. doi: 10.3934/krm.2008.1.415.

[6]

C. Imbert, R. Shvydkoy, F. Vigneron, Global well-posedness of a non-local Burgers equation: The periodic case, Annales mathématiques de Toulouse, 25 (2016), 723-758. doi: 10.5802/afst.1509.

[7]

A. Kiselev, F. Nazarov, A. Volberg, Global well-posedness for the critical 2{D} dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453. doi: 10.1007/s00222-006-0020-3.

[8]

S. Motsch, E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Physics, 144 (2011), 923-947. doi: 10.1007/s10955-011-0285-9.

[9]

S. Motsch, E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Review, 56 (2014), 577-621. doi: 10.1137/120901866.

[10]

R.W. Schwab, L. Silvestre, Regularity for parabolic integro-differential equations with very irregular kernels, Anal. PDE, 9 (2016), 727-772. doi: 10.2140/apde.2016.9.727.

[11]

R. Shvydkoy, E. Tadmor, Eulerian dynamics with a commutator forcing, Trans. Math. and Appl., (2017), 1-26. doi: 10.1093/imatrm/tnx001.

[12]

R. Shvydkoy and E. Tadmor, Eulerian dynamics with a commutator forcing Ⅲ: Fractional diffusion of order 0 < α < 1, arXiv: 1706. 08246}.

[13]

E. Tadmor and C. Tan, Critical thresholds in flocking hydrodynamics with non-local alignment Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. , 372 (2014), 20130401, 22pp.

show all references

References:
[1]

J.A. Carrillo, Y.-P. Choi, E. Tadmor, C. Tan, Critical thresholds in 1D Euler equations with non-local forces, Math. Models Methods Appl. Sci., 26 (2016), 185-206. doi: 10.1142/S0218202516500068.

[2]

J. Carrillo, Y.-P. Choi, S. Perez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior, Active Particles, Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET), (2017), 259-298. doi: 10.1007/978-3-319-49996-3_7.

[3]

P. Constantin, V. Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal., 22 (2012), 1289-1321. doi: 10.1007/s00039-012-0172-9.

[4]

T. Do, A. Kiselev, L. Ryzhik and C. Tan, Global regularity for the fractional Euler alignment system, arXiv: 1701. 05155.

[5]

S.-Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models, (2008), 415-435. doi: 10.3934/krm.2008.1.415.

[6]

C. Imbert, R. Shvydkoy, F. Vigneron, Global well-posedness of a non-local Burgers equation: The periodic case, Annales mathématiques de Toulouse, 25 (2016), 723-758. doi: 10.5802/afst.1509.

[7]

A. Kiselev, F. Nazarov, A. Volberg, Global well-posedness for the critical 2{D} dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453. doi: 10.1007/s00222-006-0020-3.

[8]

S. Motsch, E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Physics, 144 (2011), 923-947. doi: 10.1007/s10955-011-0285-9.

[9]

S. Motsch, E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Review, 56 (2014), 577-621. doi: 10.1137/120901866.

[10]

R.W. Schwab, L. Silvestre, Regularity for parabolic integro-differential equations with very irregular kernels, Anal. PDE, 9 (2016), 727-772. doi: 10.2140/apde.2016.9.727.

[11]

R. Shvydkoy, E. Tadmor, Eulerian dynamics with a commutator forcing, Trans. Math. and Appl., (2017), 1-26. doi: 10.1093/imatrm/tnx001.

[12]

R. Shvydkoy and E. Tadmor, Eulerian dynamics with a commutator forcing Ⅲ: Fractional diffusion of order 0 < α < 1, arXiv: 1706. 08246}.

[13]

E. Tadmor and C. Tan, Critical thresholds in flocking hydrodynamics with non-local alignment Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. , 372 (2014), 20130401, 22pp.

[1]

Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419

[2]

Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062

[3]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[4]

Chiun-Chuan Chen, Seung-Yeal Ha, Xiongtao Zhang. The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements. Communications on Pure & Applied Analysis, 2018, 17 (2) : 505-538. doi: 10.3934/cpaa.2018028

[5]

Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023

[6]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang, Xiongtao Zhang. Emergent dynamics in the interactions of Cucker-Smale ensembles. Kinetic & Related Models, 2017, 10 (3) : 689-723. doi: 10.3934/krm.2017028

[7]

Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control & Related Fields, 2013, 3 (4) : 447-466. doi: 10.3934/mcrf.2013.3.447

[8]

Young-Pil Choi, Jan Haskovec. Cucker-Smale model with normalized communication weights and time delay. Kinetic & Related Models, 2017, 10 (4) : 1011-1033. doi: 10.3934/krm.2017040

[9]

Ewa Girejko, Luís Machado, Agnieszka B. Malinowska, Natália Martins. On consensus in the Cucker–Smale type model on isolated time scales. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 77-89. doi: 10.3934/dcdss.2018005

[10]

Tong Li, Hailiang Liu. Critical thresholds in a relaxation system with resonance of characteristic speeds. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 511-521. doi: 10.3934/dcds.2009.24.511

[11]

Tong Li, Sunčica Čanić. Critical thresholds in a quasilinear hyperbolic model of blood flow. Networks & Heterogeneous Media, 2009, 4 (3) : 527-536. doi: 10.3934/nhm.2009.4.527

[12]

Michele Coti Zelati, Piotr Kalita. Smooth attractors for weak solutions of the SQG equation with critical dissipation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1857-1873. doi: 10.3934/dcdsb.2017110

[13]

Xiaoming He, Marco Squassina, Wenming Zou. The Nehari manifold for fractional systems involving critical nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1285-1308. doi: 10.3934/cpaa.2016.15.1285

[14]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[15]

Hongjie Dong, Dong Li. On a generalized maximum principle for a transport-diffusion model with $\log$-modulated fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3437-3454. doi: 10.3934/dcds.2014.34.3437

[16]

Matthieu Brassart. Non-critical fractional conservation laws in domains with boundary. Networks & Heterogeneous Media, 2016, 11 (2) : 251-262. doi: 10.3934/nhm.2016.11.251

[17]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[18]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

[19]

Hua Jin, Wenbin Liu, Jianjun Zhang. Multiple solutions of fractional Kirchhoff equations involving a critical nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 533-545. doi: 10.3934/dcdss.2018029

[20]

Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369-380. doi: 10.3934/mbe.2015007

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]