• Previous Article
    Non-autonomous stochastic evolution equations in Banach spaces of martingale type 2: Strict solutions and maximal regularity
  • DCDS Home
  • This Issue
  • Next Article
    Ground state solutions for Hamiltonian elliptic system with inverse square potential
2017, 37(8): 4543-4563. doi: 10.3934/dcds.2017194

Measurable sensitivity via Furstenberg families

Department of Mathematics University of Science and Technology of China Hefei, Anhui 230026, China

Tao Yu, E-mail address: ytnuo@mail.ustc.edu.cn

Received  September 2016 Revised  March 2017 Published  April 2017

Fund Project: The author was supported by NNSF of China (11371339,11431012,11571335)

Let $(X, T)$ be a topological dynamical system, and $\mu$ be a $T$-invariant Borel probability measure on $X$. Let $\mathcal{F}$ be a family of subsets of $\mathbb{Z}_+$. We introduce notions of $\mathcal{F}$-sensitivity for $\mu$ and block $\mathcal{F}$-sensitivity for $\mu$.Let $\mathcal{F}_t$ (resp. $\mathcal{F}_{ip}$) be the families consisting of thick sets (resp. IP-sets). The following Auslander-Yorke's type dichotomy theorems are obtained:(1) a minimal system is either $\mathcal{F}_{t}$-sensitive for $\mu$ or an almost one-to-one extension of its maximal equicontinous factor.(2) a minimal system is either block $\mathcal{F}_{t}$-sensitive for $\mu$ or a proximal extension of its maximal equicontinous factor.(3) a minimal system is either block $\mathcal{F}_{ip}$-sensitive for $\mu$ or an almost one-to-one extension of its $\infty$-step nilfactor.We also introduce the notion of topological $l$-sensitivity, and construct a minimal system which is $l$-sensitive but not $(l+1)$-sensitive for $l\in\mathbb{N}$.
Citation: Tao Yu. Measurable sensitivity via Furstenberg families. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4543-4563. doi: 10.3934/dcds.2017194
References:
[1]

C. Abraham, G. Biau, B. Cadre, Chaotic properties of mappings on a probability space, J. Math. Anal. Appl., 266 (2002), 420-431.

[2]

E. Akin, S. Kolyada, Li-Yorke sensitivity, Nonlinearity, 16 (2003), 1421-1433.

[3]

J. Auslander, Minimal Flows and Their Extensions, North-Holland Mathematics Studies 153, Elsevier, 1988.

[4]

J. Auslander, J. A. Yorke, Interval maps, factors of maps, and chaos, Tôhoku Math. J. (2), 32 (1980), 177-188.

[5]

V. Bergelson, Ultrafilters, IP sets, dynamics, and combinatorial number theory, Ultrafilters Across Mathematics, 23-47, Contemp. Math. , 530, Amer. Math. Soc. , Providence, RI, 2010.

[6]

B. Cadre, P. Jacob, On pairwise sensitivity, J. Math. Anal. Appl., 309 (2005), 375-382.

[7]

P. Dong, S. Donoso, A. Maass, S. Shao, X. Ye, Infinite-step nilsystems, independence and complexity, Ergodic Theory Dynam. Systems, 33 (2013), 118-143.

[8]

T. Downarowicz, E. Glasner, Isomorphic extension and applications, Topol. Methods Nonlinear Anal., 48 (2016), 321-338.

[9]

T. Downarowicz, S. Kasjan, Odometers and toeplitz systems revisited in the context of sarnak's conjecture, Studia Math., 229 (2015), 45-72.

[10]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, M. B. Porter Lectures. Princeton University Press, Princeton, N. J. , 1981.

[11]

H. Furstenberg, B. Weiss, On almost 1-1 extensions, Israel J. Math., 65 (1989), 311-322.

[12]

F. García-Ramos, Weak Forms of Topological and Measure Theoretical Equicontinuity: Relationships with Discrete Spectrum and Sequence Entropy, Ergodic Theory Dynam. Systems, to appear.

[13]

J. Gillis, Notes on a property of measurable sets, J. London Math. Soc., 11 (1936), 139-141.

[14]

E. Glasner, Y. Gutman and X. Ye, Higher order regionally proximal equivalence relations for general group actions, preprint.

[15]

I. Grigoriev, M. C. Iordan, A. Lubin, N. Ince, C. E. Silva, On μ-compatible metrics and measurable sensitivity, Colloq. Math., 126 (2012), 53-72.

[16]

J. Hallett, L. Manuelli, C. E. Silva, On Li-Yorke measurable sensitivity, Proc. Amer. Math. Soc., 143 (2015), 2411-2426.

[17]

B. Host, B. Kra, A. Maass, Nilsequences and a structure theory for topological dynamical systems, Adv. Math., 224 (2010), 103-129.

[18]

W. Huang, D. Khilko, S. Kolyada, G. H. Zhang, Dynamical compactness and sensitivity, J. Differential Equations, 260 (2016), 6800-6827.

[19]

W. Huang, S. Kolyada and G. H. Zhang, Analogues of Auslander-Yorke theorems for multisensitivity, Ergodic Theory Dynam. Systems, to appear.

[20]

W. Huang, P. Lu, X. Ye, Measure-theoretical sensitivity and equicontinuity, Israel J. Math., 183 (2011), 233-283.

[21]

W. Huang, S. Shao, X. Ye, Nil Bohr-sets and almost automorphy of higher order, Mem. Amer. Math. Soc., 241 (2016), v+83 pp.

[22]

W. Huang, X. Ye, Topological complexity, return times and weak disjointness, Ergodic Theory Dynam. Systems, 24 (2004), 825-846.

[23]

J. James, T. Koberda, K. Lindsey, C. E. Silva, P. Speh, Measurable sensitivity, Proc. Amer. Math. Soc., 136 (2008), 3549-3559.

[24]

J. Li, Dynamical characterization of C-sets and its application, Fund. Math., 216 (2012), 259-286.

[25]

J. Li, Measure-theoretic sensitivity via finite partitions, Nonlinearity, 29 (2016), 2133-2144.

[26]

J. Li, X. Ye, Recent development of chaos theory in topological dynamics, Acta Math. Sin. (Engl. Ser.), 32 (2016), 83-114.

[27]

R. Li and Y. Shi, Stronger forms of sensitivity for measure-preserving maps and semiflows on probability spaces, Abstr. Appl. Anal. , Art. , (2014), ID 769523, 10 pages.

[28]

H. Liu, L. Liao and L. Wang, Thickly syndetical sensitivity of topological dynamical system, Discrete Dyn. Nat. Soc. , Art. , (2014), ID 583431, 4 pages.

[29]

T. K. S. Moothathu, Stronger forms of sensitivity for dynamical systems, Nonlinearity, 20 (2007), 2115-2126.

[30]

D. Ruelle, Dynamical systems with turbulent behavior, Mathematical problems in theoretical physics (Proc. Internat. Conf. , Univ. Rome, Rome, 1977), Lecture Notes in Phys. , vol. 80, Springer, Berlin-New York, 1978, pp. 341-360.

[31]

S. Shao, X. Ye, Regionally proximal relation of order d is an equivalence one for minimal systems and a combinatorial consequence, Adv. Math., 231 (2012), 1786-1817.

[32]

H. Wu, H. Wang, Measure-theoretical sensitivity and scrambled sets via Furstenberg families, J. Dyn. Syst. Geom. Theor., 7 (2009), 1-12.

[33]

X. Ye, T. Yu, Sensitivity, proximal extension and higher order almost automorphy, Trans. Amer. Math. Soc., 13 (2001).

[34]

X. Ye, R. Zhang, On sensitive sets in topological dynamics, Nonlinearity, 21 (2008), 1601-1620.

[35]

R. Zhang, On sensitivity, Sequence Entropy and Related Problems in Dynamical Systems, Ph. D thesis, University of Science and Technology of China, 2008.

show all references

References:
[1]

C. Abraham, G. Biau, B. Cadre, Chaotic properties of mappings on a probability space, J. Math. Anal. Appl., 266 (2002), 420-431.

[2]

E. Akin, S. Kolyada, Li-Yorke sensitivity, Nonlinearity, 16 (2003), 1421-1433.

[3]

J. Auslander, Minimal Flows and Their Extensions, North-Holland Mathematics Studies 153, Elsevier, 1988.

[4]

J. Auslander, J. A. Yorke, Interval maps, factors of maps, and chaos, Tôhoku Math. J. (2), 32 (1980), 177-188.

[5]

V. Bergelson, Ultrafilters, IP sets, dynamics, and combinatorial number theory, Ultrafilters Across Mathematics, 23-47, Contemp. Math. , 530, Amer. Math. Soc. , Providence, RI, 2010.

[6]

B. Cadre, P. Jacob, On pairwise sensitivity, J. Math. Anal. Appl., 309 (2005), 375-382.

[7]

P. Dong, S. Donoso, A. Maass, S. Shao, X. Ye, Infinite-step nilsystems, independence and complexity, Ergodic Theory Dynam. Systems, 33 (2013), 118-143.

[8]

T. Downarowicz, E. Glasner, Isomorphic extension and applications, Topol. Methods Nonlinear Anal., 48 (2016), 321-338.

[9]

T. Downarowicz, S. Kasjan, Odometers and toeplitz systems revisited in the context of sarnak's conjecture, Studia Math., 229 (2015), 45-72.

[10]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, M. B. Porter Lectures. Princeton University Press, Princeton, N. J. , 1981.

[11]

H. Furstenberg, B. Weiss, On almost 1-1 extensions, Israel J. Math., 65 (1989), 311-322.

[12]

F. García-Ramos, Weak Forms of Topological and Measure Theoretical Equicontinuity: Relationships with Discrete Spectrum and Sequence Entropy, Ergodic Theory Dynam. Systems, to appear.

[13]

J. Gillis, Notes on a property of measurable sets, J. London Math. Soc., 11 (1936), 139-141.

[14]

E. Glasner, Y. Gutman and X. Ye, Higher order regionally proximal equivalence relations for general group actions, preprint.

[15]

I. Grigoriev, M. C. Iordan, A. Lubin, N. Ince, C. E. Silva, On μ-compatible metrics and measurable sensitivity, Colloq. Math., 126 (2012), 53-72.

[16]

J. Hallett, L. Manuelli, C. E. Silva, On Li-Yorke measurable sensitivity, Proc. Amer. Math. Soc., 143 (2015), 2411-2426.

[17]

B. Host, B. Kra, A. Maass, Nilsequences and a structure theory for topological dynamical systems, Adv. Math., 224 (2010), 103-129.

[18]

W. Huang, D. Khilko, S. Kolyada, G. H. Zhang, Dynamical compactness and sensitivity, J. Differential Equations, 260 (2016), 6800-6827.

[19]

W. Huang, S. Kolyada and G. H. Zhang, Analogues of Auslander-Yorke theorems for multisensitivity, Ergodic Theory Dynam. Systems, to appear.

[20]

W. Huang, P. Lu, X. Ye, Measure-theoretical sensitivity and equicontinuity, Israel J. Math., 183 (2011), 233-283.

[21]

W. Huang, S. Shao, X. Ye, Nil Bohr-sets and almost automorphy of higher order, Mem. Amer. Math. Soc., 241 (2016), v+83 pp.

[22]

W. Huang, X. Ye, Topological complexity, return times and weak disjointness, Ergodic Theory Dynam. Systems, 24 (2004), 825-846.

[23]

J. James, T. Koberda, K. Lindsey, C. E. Silva, P. Speh, Measurable sensitivity, Proc. Amer. Math. Soc., 136 (2008), 3549-3559.

[24]

J. Li, Dynamical characterization of C-sets and its application, Fund. Math., 216 (2012), 259-286.

[25]

J. Li, Measure-theoretic sensitivity via finite partitions, Nonlinearity, 29 (2016), 2133-2144.

[26]

J. Li, X. Ye, Recent development of chaos theory in topological dynamics, Acta Math. Sin. (Engl. Ser.), 32 (2016), 83-114.

[27]

R. Li and Y. Shi, Stronger forms of sensitivity for measure-preserving maps and semiflows on probability spaces, Abstr. Appl. Anal. , Art. , (2014), ID 769523, 10 pages.

[28]

H. Liu, L. Liao and L. Wang, Thickly syndetical sensitivity of topological dynamical system, Discrete Dyn. Nat. Soc. , Art. , (2014), ID 583431, 4 pages.

[29]

T. K. S. Moothathu, Stronger forms of sensitivity for dynamical systems, Nonlinearity, 20 (2007), 2115-2126.

[30]

D. Ruelle, Dynamical systems with turbulent behavior, Mathematical problems in theoretical physics (Proc. Internat. Conf. , Univ. Rome, Rome, 1977), Lecture Notes in Phys. , vol. 80, Springer, Berlin-New York, 1978, pp. 341-360.

[31]

S. Shao, X. Ye, Regionally proximal relation of order d is an equivalence one for minimal systems and a combinatorial consequence, Adv. Math., 231 (2012), 1786-1817.

[32]

H. Wu, H. Wang, Measure-theoretical sensitivity and scrambled sets via Furstenberg families, J. Dyn. Syst. Geom. Theor., 7 (2009), 1-12.

[33]

X. Ye, T. Yu, Sensitivity, proximal extension and higher order almost automorphy, Trans. Amer. Math. Soc., 13 (2001).

[34]

X. Ye, R. Zhang, On sensitive sets in topological dynamics, Nonlinearity, 21 (2008), 1601-1620.

[35]

R. Zhang, On sensitivity, Sequence Entropy and Related Problems in Dynamical Systems, Ph. D thesis, University of Science and Technology of China, 2008.

Figure 1.  $B^{(1)}, B^{(2)}$
[1]

Alexander Vladimirov. Equicontinuous sweeping processes. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 565-573. doi: 10.3934/dcdsb.2013.18.565

[2]

Gabriel Ponce, Ali Tahzibi, Régis Varão. Minimal yet measurable foliations. Journal of Modern Dynamics, 2014, 8 (1) : 93-107. doi: 10.3934/jmd.2014.8.93

[3]

Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219-248. doi: 10.3934/jmd.2017010

[4]

Kamil Rajdl, Petr Lansky. Fano factor estimation. Mathematical Biosciences & Engineering, 2014, 11 (1) : 105-123. doi: 10.3934/mbe.2014.11.105

[5]

Xiaoyu Xing, Hailiang Yang. American type geometric step options. Journal of Industrial & Management Optimization, 2013, 9 (3) : 549-560. doi: 10.3934/jimo.2013.9.549

[6]

Petr Kůrka. Minimality in iterative systems of Möbius transformations. Conference Publications, 2011, 2011 (Special) : 903-912. doi: 10.3934/proc.2011.2011.903

[7]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[8]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

[9]

Marc Rauch. Variational principles for the topological pressure of measurable potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 367-394. doi: 10.3934/dcdss.2017018

[10]

Hongyong Deng, Wei Wei. Existence and stability analysis for nonlinear optimal control problems with $1$-mean equicontinuous controls. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1409-1422. doi: 10.3934/jimo.2015.11.1409

[11]

Kai-Uwe Schmidt, Jonathan Jedwab, Matthew G. Parker. Two binary sequence families with large merit factor. Advances in Mathematics of Communications, 2009, 3 (2) : 135-156. doi: 10.3934/amc.2009.3.135

[12]

Ryusuke Kon. Dynamics of competitive systems with a single common limiting factor. Mathematical Biosciences & Engineering, 2015, 12 (1) : 71-81. doi: 10.3934/mbe.2015.12.71

[13]

Ke Ruan, Masao Fukushima. Robust portfolio selection with a combined WCVaR and factor model. Journal of Industrial & Management Optimization, 2012, 8 (2) : 343-362. doi: 10.3934/jimo.2012.8.343

[14]

Yanming Ge. Analysis of airline seat control with region factor. Journal of Industrial & Management Optimization, 2012, 8 (2) : 363-378. doi: 10.3934/jimo.2012.8.363

[15]

Brandon Seward. Every action of a nonamenable group is the factor of a small action. Journal of Modern Dynamics, 2014, 8 (2) : 251-270. doi: 10.3934/jmd.2014.8.251

[16]

Shaoyong Lai, Yulan Zhou. A stochastic optimal growth model with a depreciation factor. Journal of Industrial & Management Optimization, 2010, 6 (2) : 283-297. doi: 10.3934/jimo.2010.6.283

[17]

Carlos Durán, Diego Otero. The projective symplectic geometry of higher order variational problems: Minimality conditions. Journal of Geometric Mechanics, 2016, 8 (3) : 305-322. doi: 10.3934/jgm.2016009

[18]

Fernando Alcalde Cuesta, Françoise Dal'Bo, Matilde Martínez, Alberto Verjovsky. Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4619-4635. doi: 10.3934/dcds.2016001

[19]

Christopher J. Larsen. Local minimality and crack prediction in quasi-static Griffith fracture evolution. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 121-129. doi: 10.3934/dcdss.2013.6.121

[20]

Aihua Fan, Shilei Fan, Lingmin Liao, Yuefei Wang. Minimality of p-adic rational maps with good reduction. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3161-3182. doi: 10.3934/dcds.2017135

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (4)
  • HTML views (3)
  • Cited by (0)

Other articles
by authors

[Back to Top]