2017, 37(8): 4439-4460. doi: 10.3934/dcds.2017190

On the uniqueness of solution to generalized Chaplygin gas

Department of Mathematics and Informatics, University of Novi Sad Trg Dositeja Obradovića 4 21000 Novi Sad, Serbia

Marko Nedeljkov, E-mail address: marko@dmi.uns.ac.rs

Received  June 2016 Revised  March 2017 Published  April 2017

Fund Project: The first author is partially supported by the projects OI174024 and III44006, Serbian Ministry of Science and by the Project 114-451-2098, APV Secretariat for Science

The main object of the paper is finding a unique solution to Riemann problem for generalized Chaplygin gas model. That is a model of the dark energy in Universe introduced in the last decade. It permits an infinite mass concentration so one has to consider solutions containing the Dirac delta function. Although it was easy to construct solution to any Riemann problem, the usual admissibility conditions, overcompressiveness, do not exclude unwanted delta-type waves when a classical solution exists. We are using Shadow Wave approach in order to solve that uniqueness problem since they are well adopted for using Lax entropy–entropy flux conditions and there is a rich family of convex entropies.
Citation: Marko Nedeljkov, Sanja Ružičić. On the uniqueness of solution to generalized Chaplygin gas. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4439-4460. doi: 10.3934/dcds.2017190
References:
[1]

A. Baricz, Bounds for modified Bessel functions of the first and second kinds, Proceedings of the Edinburgh Mathematical Society, 53 (2010), 575-599.

[2]

M. C. Bento, O. Bertolami, A. A. Sen, Generalized Chaplygin gas. accelerated expansion and dark energy-matter unification, Phys. Rev., D66 (2002), 043507.

[3]

Y. Brenier, Solutions with concentration to the Riemann problem for the one-dimensional Chaplygin gas equations, Journal of Mathematical Fluid Mechanics, 7 (2005), 326-331.

[4] A. Bressan, Hyperbolic Systems of Conservation Laws, Oxford University Press, New York, 2000.
[5]

G. -Q. Chen, H. Liu, Formation of δ-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34 (2003), 925-938.

[6]

C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Heidelberg, 2000.

[7]

W. E, Y. G. Rykov, Ya. G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys., 177 (1996), 349-380.

[8]

M. E. H. Ismail, Complete monotonicity of modified bessel functions, Proceedings of the American Mathematical Society, ., 108 (1990), 353-361.

[9]

A. Kamenshchik, U. Moschella, V. Pasquier, An alternative to quintessence, Phys. Lett., 511 (2001), 265-268.

[10]

B. L. Keyfitz, H. C. Kranzer, Spaces of weighted measures for conservation laws with singular shock solutions, J. Diff. Eq., 118 (1995), 420-451.

[11]

A. Laforgia and P. Natalini, Some inequalities for modified Bessel functions, Journal of Inequalities and Applications, 2010 (2010), Article ID 253035, 10 pages.

[12]

P. LeFloch, An existence and uniqueness result for two nonstrictly hyperbolic systems, in: IMA Volumes in Math. and its Appl. , B. L. Keyfitz, M. Shearer (EDS), Nonlinear evolution equations that change type, Springer Verlag, Vol 27,1990,126-138.

[13]

D. Mitrović, M. Nedeljkov, Delta shock waves as a limit of shock waves, J. Hyp. Diff. Equ., 4 (2007), 629-653.

[14]

M. Nedeljkov, Singular shock waves in interactions, Quart. Appl. Math., 66 (2008), 281-302.

[15]

M. Nedeljkov, Shadow waves, entropies and interactions for delta and singular shocks, Arch. Ration. Mech. Anal., 197 (2010), 489-537.

[16]

M. Nedeljkov, Singular shock interactions in Chaplygin gas dynamic system, J. Differ. Equations, 256 (2014), 3859-3887.

[17]

E. Yu. Panov, V. M. Shelkovich, δ0-Shock waves as a new type of solutions to systems of conservation laws, J. Differ. Equations, 228 (2006), 49-86.

[18] A. D. Polyanin, V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, CRC-Press, Boca Raton, 1995.
[19]

D. Serre, Systems of Conservation Laws I, Cambridge University Press, 1999.

[20]

M. Sun, The exact Riemann solutions to the generalized Chaplygin gas equations with friction, Commun. Nonlinear Sci. Numer. Simulat., 36 (2016), 342-353.

[21]

G. Wang, The Riemann problem for one dimensional generalized Chaplygin gas dynamics, J. Math. Anal. Appl., 403 (2013), 434-450.

[22]

G. N. Watson, A Treatise on The Theory of Bessel Functions, Cambridge University Press, 1966.

[23]

H. Yang, Y. Zhang, New developments of delta shock waves and its applications in systems of conservation laws, J. Differ. Equations, 252 (2012), 5951-5993.

show all references

References:
[1]

A. Baricz, Bounds for modified Bessel functions of the first and second kinds, Proceedings of the Edinburgh Mathematical Society, 53 (2010), 575-599.

[2]

M. C. Bento, O. Bertolami, A. A. Sen, Generalized Chaplygin gas. accelerated expansion and dark energy-matter unification, Phys. Rev., D66 (2002), 043507.

[3]

Y. Brenier, Solutions with concentration to the Riemann problem for the one-dimensional Chaplygin gas equations, Journal of Mathematical Fluid Mechanics, 7 (2005), 326-331.

[4] A. Bressan, Hyperbolic Systems of Conservation Laws, Oxford University Press, New York, 2000.
[5]

G. -Q. Chen, H. Liu, Formation of δ-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34 (2003), 925-938.

[6]

C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Heidelberg, 2000.

[7]

W. E, Y. G. Rykov, Ya. G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys., 177 (1996), 349-380.

[8]

M. E. H. Ismail, Complete monotonicity of modified bessel functions, Proceedings of the American Mathematical Society, ., 108 (1990), 353-361.

[9]

A. Kamenshchik, U. Moschella, V. Pasquier, An alternative to quintessence, Phys. Lett., 511 (2001), 265-268.

[10]

B. L. Keyfitz, H. C. Kranzer, Spaces of weighted measures for conservation laws with singular shock solutions, J. Diff. Eq., 118 (1995), 420-451.

[11]

A. Laforgia and P. Natalini, Some inequalities for modified Bessel functions, Journal of Inequalities and Applications, 2010 (2010), Article ID 253035, 10 pages.

[12]

P. LeFloch, An existence and uniqueness result for two nonstrictly hyperbolic systems, in: IMA Volumes in Math. and its Appl. , B. L. Keyfitz, M. Shearer (EDS), Nonlinear evolution equations that change type, Springer Verlag, Vol 27,1990,126-138.

[13]

D. Mitrović, M. Nedeljkov, Delta shock waves as a limit of shock waves, J. Hyp. Diff. Equ., 4 (2007), 629-653.

[14]

M. Nedeljkov, Singular shock waves in interactions, Quart. Appl. Math., 66 (2008), 281-302.

[15]

M. Nedeljkov, Shadow waves, entropies and interactions for delta and singular shocks, Arch. Ration. Mech. Anal., 197 (2010), 489-537.

[16]

M. Nedeljkov, Singular shock interactions in Chaplygin gas dynamic system, J. Differ. Equations, 256 (2014), 3859-3887.

[17]

E. Yu. Panov, V. M. Shelkovich, δ0-Shock waves as a new type of solutions to systems of conservation laws, J. Differ. Equations, 228 (2006), 49-86.

[18] A. D. Polyanin, V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, CRC-Press, Boca Raton, 1995.
[19]

D. Serre, Systems of Conservation Laws I, Cambridge University Press, 1999.

[20]

M. Sun, The exact Riemann solutions to the generalized Chaplygin gas equations with friction, Commun. Nonlinear Sci. Numer. Simulat., 36 (2016), 342-353.

[21]

G. Wang, The Riemann problem for one dimensional generalized Chaplygin gas dynamics, J. Math. Anal. Appl., 403 (2013), 434-450.

[22]

G. N. Watson, A Treatise on The Theory of Bessel Functions, Cambridge University Press, 1966.

[23]

H. Yang, Y. Zhang, New developments of delta shock waves and its applications in systems of conservation laws, J. Differ. Equations, 252 (2012), 5951-5993.

Figure 1.  Classical waves
Figure 2.  Overcompressive SDW vs. S1+S2
Figure 3.  Energy entropy condition
Figure 4.  Inequalities (15) and (16)
Figure 5.  Inequalities (15) and (16) are not enough to prove non-positivity of $\hat{E}_{\lambda}^1$
Figure 6.  Entropies at $\Gamma_{ss}$ curve – the first entropy pair
Figure 7.  Entropies at $\Gamma_{ss}$ curve – the second entropy pair
[1]

Huahui Li, Zhiqiang Shao. Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2373-2400. doi: 10.3934/cpaa.2016041

[2]

Geng Lai, Wancheng Sheng, Yuxi Zheng. Simple waves and pressure delta waves for a Chaplygin gas in two-dimensions. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 489-523. doi: 10.3934/dcds.2011.31.489

[3]

M.T. Boudjelkha. Extended Riemann Bessel functions. Conference Publications, 2005, 2005 (Special) : 121-130. doi: 10.3934/proc.2005.2005.121

[4]

Jianjun Chen, Wancheng Sheng. The Riemann problem and the limit solutions as magnetic field vanishes to magnetogasdynamics for generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2018, 17 (1) : 127-142. doi: 10.3934/cpaa.2018008

[5]

Mihaela Roxana Nicolai, Dan Tiba. Implicit functions and parametrizations in dimension three: Generalized solutions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2701-2710. doi: 10.3934/dcds.2015.35.2701

[6]

Ezzeddine Zahrouni. On the Lyapunov functions for the solutions of the generalized Burgers equation . Communications on Pure & Applied Analysis, 2003, 2 (3) : 391-410. doi: 10.3934/cpaa.2003.2.391

[7]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure & Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[8]

Tohru Tsujikawa, Kousuke Kuto, Yasuhito Miyamoto, Hirofumi Izuhara. Stationary solutions for some shadow system of the Keller-Segel model with logistic growth. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 1023-1034. doi: 10.3934/dcdss.2015.8.1023

[9]

Meixiang Huang, Zhi-Qiang Shao. Riemann problem for the relativistic generalized Chaplygin Euler equations. Communications on Pure & Applied Analysis, 2016, 15 (1) : 127-138. doi: 10.3934/cpaa.2016.15.127

[10]

Yutian Lei. Positive solutions of integral systems involving Bessel potentials. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2721-2737. doi: 10.3934/cpaa.2013.12.2721

[11]

Xiaolong Han, Guozhen Lu. Regularity of solutions to an integral equation associated with Bessel potential. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1111-1119. doi: 10.3934/cpaa.2011.10.1111

[12]

Henri Berestycki, Jean-Pierre Nadal, Nancy Rodíguez. A model of riots dynamics: Shocks, diffusion and thresholds. Networks & Heterogeneous Media, 2015, 10 (3) : 443-475. doi: 10.3934/nhm.2015.10.443

[13]

Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2941-2961. doi: 10.3934/dcdsb.2014.19.2941

[14]

Brian Straughan. Shocks and acceleration waves in modern continuum mechanics and in social systems. Evolution Equations & Control Theory, 2014, 3 (3) : 541-555. doi: 10.3934/eect.2014.3.541

[15]

Youcef Mammeri. On the decay in time of solutions of some generalized regularized long waves equations. Communications on Pure & Applied Analysis, 2008, 7 (3) : 513-532. doi: 10.3934/cpaa.2008.7.513

[16]

K. T. Joseph, Manas R. Sahoo. Vanishing viscosity approach to a system of conservation laws admitting $\delta''$ waves. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2091-2118. doi: 10.3934/cpaa.2013.12.2091

[17]

Ju Ge, Wancheng Sheng. The two dimensional gas expansion problem of the Euler equations for the generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2733-2748. doi: 10.3934/cpaa.2014.13.2733

[18]

Lu Chen, Zhao Liu, Guozhen Lu. Qualitative properties of solutions to an integral system associated with the Bessel potential. Communications on Pure & Applied Analysis, 2016, 15 (3) : 893-906. doi: 10.3934/cpaa.2016.15.893

[19]

Carlota M. Cuesta, Sabine Hittmeir, Christian Schmeiser. Weak shocks of a BGK kinetic model for isentropic gas dynamics. Kinetic & Related Models, 2010, 3 (2) : 255-279. doi: 10.3934/krm.2010.3.255

[20]

Theodore Kolokolnikov, Michael J. Ward. Bifurcation of spike equilibria in the near-shadow Gierer-Meinhardt model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1033-1064. doi: 10.3934/dcdsb.2004.4.1033

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]