August 2017, 37(8): 4391-4398. doi: 10.3934/dcds.2017188

Exact azimuthal internal waves with an underlying current

Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

Received  January 2017 Revised  May 2017 Published  April 2017

In this paper, we present an explicit and exact solution of the nonlinear governing equations including Coriolis and centripetal terms for internal azimuthal waves with a uniform current in the $\beta$-plane approximation near the equator. This solution is described in the Lagrangian framework. The unidirectional azimuthal internal trapped are symmetric about the equator and propagate eastward above the thermocline and beneath the near-surface layer.

Citation: Hung-Chu Hsu. Exact azimuthal internal waves with an underlying current. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4391-4398. doi: 10.3934/dcds.2017188
References:
[1]

A. Constantin, Edge waves along a sloping beach, J. Phys. A, 34 (2001), 9723-9731. doi: 10.1088/0305-4470/34/45/311.

[2]

A. Constantin, The trajectories of particles in Stokes waves, Int. Math., 166 (2006), 523-535. doi: 10.1007/s00222-006-0002-5.

[3]

A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 63 (2010), 533-557. doi: 10.1002/cpa.20299.

[4]

A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res.-Oceans, 117 (2012), C05029. doi: 10.1029/2012JC007879.

[5]

A. Constantin, Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanogr., 43 (2013), 165-175. doi: 10.1175/JPO-D-12-062.1.

[6]

A. Constantin and P. Germain, Instability of some equatorially trapped waves, J. Geophys. Res.-Oceans, 118 (2013), 2802-2810. doi: 10.1002/jgrc.20219.

[7]

A. Constantin, Some nonlinear, Equatorial trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44 (2014), 781-789.

[8]

A. Constantin and R. S. Johnson, The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astrophys. Fluid Dyn., 109 (2015), 311-358. doi: 10.1080/03091929.2015.1066785.

[9]

A. Constantin and R. S. Johnson, An exact, steady, purely azimuthal equatorial flow with a free surface, J. Phys. Oceanogr., 46 (2016), 1935-1945. doi: 10.1175/JPO-D-15-0205.1.

[10]

A. V. Fedorov and W. K. Melville, Kelvin fronts on the equatorial thermocline, J. Phys. Oceanogr., 30 (2000), 1692-1705. doi: 10.1175/1520-0485(2000)030<1692:KFOTET>2.0.CO;2.

[11]

F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile (in German), Ann. Phys., 2 (1809), 412-445.

[12]

R. J. Greatbatch, Kelvin wave fronts, Rossby solitary waves and the nonlinear spin-up of the equatorial oceans, J. Geophys. Res., 90 (1985), 9097-9107. doi: 10.1029/JC090iC05p09097.

[13]

D. Henry, The trajectories of particles in deep-water Stokes waves, Int. Math. Res. Not. Art., 2006 (2006), ID23405, 13pp. doi: 10.1155/IMRN/2006/23405.

[14]

D. Henry, An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids, 38 (2013), 18-21. doi: 10.1016/j.euromechflu.2012.10.001.

[15]

D. Henry, Internal equatorial water waves in the f-plane, J. Nonlinear Mathematical Physics, 22 (2015), 499-506. doi: 10.1080/14029251.2015.1113046.

[16]

D. Henry and H. C. Hsu, Instability of internal equatorial water waves, J. Differ. Equ., 258 (2015), 1015-1024. doi: 10.1016/j.jde.2014.08.019.

[17]

D. Henry, Equatorially trapped nonlinear water waves in the β-plane approximation with centripetal forces, J. Fluid Mech., 804 (2016), R1, 11pp. doi: 10.1017/jfm.2016.544.

[18]

H. C. Hsu, Some nonlinear internal equatorial flow, Nonlinear Anal. Real World Appl., 18 (2014), 69-74. doi: 10.1016/j.nonrwa.2013.12.011.

[19]

H. C. Hsu, An exact solution for nonlinear internal Equatorial waves in the f-plane approximation, J. Math. Fluid Mech., 16 (2014), 463-471. doi: 10.1007/s00021-014-0168-3.

[20]

H. C. Hsu, Some nonlinear internal equatorial waves with a strong underlying current, Appl. Math. Lett., 34 (2014), 1-6. doi: 10.1016/j.aml.2014.03.005.

[21]

H. C. Hsu, An exact solution for equatorial waves, Monatsh Math., 175 (2015), 143-152. doi: 10.1007/s00605-014-0618-2.

[22]

H. C. Hsu and C. I. Martin, Free-surface capillary-gravity azimuthal equatorial flows, Nonlinear Anal., 144 (2016), 1-9. doi: 10.1016/j.na.2016.05.019.

[23]

H. C. Hsu, Exact steady azimuthal equatorial internal waves in rotational stratified fluids, Preprint J. Math. Fluid Mech., (2017).

[24]

D. Ionescu-Kruse, An exact solution for geophysical edge waves in the f-plane approximation, Nonlinear Anal. Real World Appl., 24 (2015), 190-195. doi: 10.1016/j.nonrwa.2015.02.002.

[25]

T. Izumo, The Equatorial current, meridional overturning circulation, and their roles in mass and heat exchanges during the El Nino events in the tropical Pacific Ocean, Ocean Dyn., 55 (2005), 110-123.

[26]

J. N. MoumJ. D. Nash and W. D. Smyth, Narrowband oscillations in the upper equatorial ocean. Part Ⅰ: Interpretation as shear instability, J. Phys. Oceanogr., 41 (2011), 397-411. doi: 10.1175/2010JPO4450.1.

show all references

References:
[1]

A. Constantin, Edge waves along a sloping beach, J. Phys. A, 34 (2001), 9723-9731. doi: 10.1088/0305-4470/34/45/311.

[2]

A. Constantin, The trajectories of particles in Stokes waves, Int. Math., 166 (2006), 523-535. doi: 10.1007/s00222-006-0002-5.

[3]

A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 63 (2010), 533-557. doi: 10.1002/cpa.20299.

[4]

A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res.-Oceans, 117 (2012), C05029. doi: 10.1029/2012JC007879.

[5]

A. Constantin, Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanogr., 43 (2013), 165-175. doi: 10.1175/JPO-D-12-062.1.

[6]

A. Constantin and P. Germain, Instability of some equatorially trapped waves, J. Geophys. Res.-Oceans, 118 (2013), 2802-2810. doi: 10.1002/jgrc.20219.

[7]

A. Constantin, Some nonlinear, Equatorial trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44 (2014), 781-789.

[8]

A. Constantin and R. S. Johnson, The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astrophys. Fluid Dyn., 109 (2015), 311-358. doi: 10.1080/03091929.2015.1066785.

[9]

A. Constantin and R. S. Johnson, An exact, steady, purely azimuthal equatorial flow with a free surface, J. Phys. Oceanogr., 46 (2016), 1935-1945. doi: 10.1175/JPO-D-15-0205.1.

[10]

A. V. Fedorov and W. K. Melville, Kelvin fronts on the equatorial thermocline, J. Phys. Oceanogr., 30 (2000), 1692-1705. doi: 10.1175/1520-0485(2000)030<1692:KFOTET>2.0.CO;2.

[11]

F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile (in German), Ann. Phys., 2 (1809), 412-445.

[12]

R. J. Greatbatch, Kelvin wave fronts, Rossby solitary waves and the nonlinear spin-up of the equatorial oceans, J. Geophys. Res., 90 (1985), 9097-9107. doi: 10.1029/JC090iC05p09097.

[13]

D. Henry, The trajectories of particles in deep-water Stokes waves, Int. Math. Res. Not. Art., 2006 (2006), ID23405, 13pp. doi: 10.1155/IMRN/2006/23405.

[14]

D. Henry, An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids, 38 (2013), 18-21. doi: 10.1016/j.euromechflu.2012.10.001.

[15]

D. Henry, Internal equatorial water waves in the f-plane, J. Nonlinear Mathematical Physics, 22 (2015), 499-506. doi: 10.1080/14029251.2015.1113046.

[16]

D. Henry and H. C. Hsu, Instability of internal equatorial water waves, J. Differ. Equ., 258 (2015), 1015-1024. doi: 10.1016/j.jde.2014.08.019.

[17]

D. Henry, Equatorially trapped nonlinear water waves in the β-plane approximation with centripetal forces, J. Fluid Mech., 804 (2016), R1, 11pp. doi: 10.1017/jfm.2016.544.

[18]

H. C. Hsu, Some nonlinear internal equatorial flow, Nonlinear Anal. Real World Appl., 18 (2014), 69-74. doi: 10.1016/j.nonrwa.2013.12.011.

[19]

H. C. Hsu, An exact solution for nonlinear internal Equatorial waves in the f-plane approximation, J. Math. Fluid Mech., 16 (2014), 463-471. doi: 10.1007/s00021-014-0168-3.

[20]

H. C. Hsu, Some nonlinear internal equatorial waves with a strong underlying current, Appl. Math. Lett., 34 (2014), 1-6. doi: 10.1016/j.aml.2014.03.005.

[21]

H. C. Hsu, An exact solution for equatorial waves, Monatsh Math., 175 (2015), 143-152. doi: 10.1007/s00605-014-0618-2.

[22]

H. C. Hsu and C. I. Martin, Free-surface capillary-gravity azimuthal equatorial flows, Nonlinear Anal., 144 (2016), 1-9. doi: 10.1016/j.na.2016.05.019.

[23]

H. C. Hsu, Exact steady azimuthal equatorial internal waves in rotational stratified fluids, Preprint J. Math. Fluid Mech., (2017).

[24]

D. Ionescu-Kruse, An exact solution for geophysical edge waves in the f-plane approximation, Nonlinear Anal. Real World Appl., 24 (2015), 190-195. doi: 10.1016/j.nonrwa.2015.02.002.

[25]

T. Izumo, The Equatorial current, meridional overturning circulation, and their roles in mass and heat exchanges during the El Nino events in the tropical Pacific Ocean, Ocean Dyn., 55 (2005), 110-123.

[26]

J. N. MoumJ. D. Nash and W. D. Smyth, Narrowband oscillations in the upper equatorial ocean. Part Ⅰ: Interpretation as shear instability, J. Phys. Oceanogr., 41 (2011), 397-411. doi: 10.1175/2010JPO4450.1.

[1]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[2]

Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations & Control Theory, 2015, 4 (3) : 325-346. doi: 10.3934/eect.2015.4.325

[3]

Jibin Li, Yi Zhang. Exact solitary wave and quasi-periodic wave solutions for four fifth-order nonlinear wave equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 623-631. doi: 10.3934/dcdsb.2010.13.623

[4]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[5]

Jibin Li, Fengjuan Chen. Exact travelling wave solutions and their dynamical behavior for a class coupled nonlinear wave equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 163-172. doi: 10.3934/dcdsb.2013.18.163

[6]

José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051

[7]

Zhaosheng Feng, Qingguo Meng. Exact solution for a two-dimensional KDV-Burgers-type equation with nonlinear terms of any order. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 285-291. doi: 10.3934/dcdsb.2007.7.285

[8]

Claudianor O. Alves. Existence of periodic solution for a class of systems involving nonlinear wave equations. Communications on Pure & Applied Analysis, 2005, 4 (3) : 487-498. doi: 10.3934/cpaa.2005.4.487

[9]

Kaili Zhuang, Tatsien Li, Bopeng Rao. Exact controllability for first order quasilinear hyperbolic systems with internal controls. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1105-1124. doi: 10.3934/dcds.2016.36.1105

[10]

Jiao Chen, Weike Wang. The point-wise estimates for the solution of damped wave equation with nonlinear convection in multi-dimensional space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 307-330. doi: 10.3934/cpaa.2014.13.307

[11]

R. Bartolo, Anna Maria Candela, J.L. Flores, Addolorata Salvatore. Periodic trajectories in plane wave type spacetimes. Conference Publications, 2005, 2005 (Special) : 77-83. doi: 10.3934/proc.2005.2005.77

[12]

Viorel Barbu, Ionuţ Munteanu. Internal stabilization of Navier-Stokes equation with exact controllability on spaces with finite codimension. Evolution Equations & Control Theory, 2012, 1 (1) : 1-16. doi: 10.3934/eect.2012.1.1

[13]

Barbara Abraham-Shrauner. Exact solutions of nonlinear partial differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 577-582. doi: 10.3934/dcdss.2018032

[14]

Bendong Lou. Traveling wave solutions of a generalized curvature flow equation in the plane. Conference Publications, 2007, 2007 (Special) : 687-693. doi: 10.3934/proc.2007.2007.687

[15]

Jerry Bona, Jiahong Wu. Temporal growth and eventual periodicity for dispersive wave equations in a quarter plane. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1141-1168. doi: 10.3934/dcds.2009.23.1141

[16]

Patrick Martinez, Judith Vancostenoble. Exact controllability in "arbitrarily short time" of the semilinear wave equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 901-924. doi: 10.3934/dcds.2003.9.901

[17]

Tatsien Li, Bopeng Rao, Yimin Wei. Generalized exact boundary synchronization for a coupled system of wave equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2893-2905. doi: 10.3934/dcds.2014.34.2893

[18]

Arnaud Heibig, Mohand Moussaoui. Exact controllability of the wave equation for domains with slits and for mixed boundary conditions. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 367-386. doi: 10.3934/dcds.1996.2.367

[19]

Irena Lasiecka, Roberto Triggiani. Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument. Conference Publications, 2005, 2005 (Special) : 556-565. doi: 10.3934/proc.2005.2005.556

[20]

Chiun-Chuan Chen, Li-Chang Hung. Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka-Volterra systems of three competing species. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1451-1469. doi: 10.3934/cpaa.2016.15.1451

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (4)
  • HTML views (7)
  • Cited by (0)

Other articles
by authors

[Back to Top]