
Previous Article
On coupled Dirac systems
 DCDS Home
 This Issue

Next Article
Livšic theorem for banach rings
Statistical and deterministic dynamics of maps with memory
1.  Department of Mathematics and Statistics, Concordia University 1455 de Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8, Canada 
2.  Department of Mathematics, Honghe University Mengzi, Yunnan 661100, China 
3.  Department of Mathematics and Statistics, Concordia University 1455 de Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8, Canada 
References:
[1] 
P. Góra, A. Boyarsky and Z. Li, Singular SRB measures for a non 11 map of the unit square, Journal of Stat. Physics, 165 (2016), 409433, available at http://arxiv.org/abs/1607. 01658, fulltext viewonly version: http://rdcu.be/kod0 
[2] 
F. Dyson, Birds and Frogs, Notices of Amer. Math. Soc., 56 (2009), 212223. 
[3] 
J. Maynard Smith, Mathematical Ideas in Biology, Cambridge University Press, 1968. 
[4] 
B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps, Israel J. Math., 116 (2000), 223248. 
[5] 
M. Tsujii, Absolutely continuous invariant measures for piecewise realanalytic expanding maps on the plane, Commun. Math Phys., 208 (2000), 605622. 
[6] 
G. C. Wu, D. Baleanu, Discrete chaos in fractional delayed logistic maps, Nonlinear Dynam., 80 (2015), 16971703. 
[7] 
L. Zou, A lower bound for the smallest singular value, J. Math. Inequal., 6 (2012), 625629. 
show all references
References:
[1] 
P. Góra, A. Boyarsky and Z. Li, Singular SRB measures for a non 11 map of the unit square, Journal of Stat. Physics, 165 (2016), 409433, available at http://arxiv.org/abs/1607. 01658, fulltext viewonly version: http://rdcu.be/kod0 
[2] 
F. Dyson, Birds and Frogs, Notices of Amer. Math. Soc., 56 (2009), 212223. 
[3] 
J. Maynard Smith, Mathematical Ideas in Biology, Cambridge University Press, 1968. 
[4] 
B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps, Israel J. Math., 116 (2000), 223248. 
[5] 
M. Tsujii, Absolutely continuous invariant measures for piecewise realanalytic expanding maps on the plane, Commun. Math Phys., 208 (2000), 605622. 
[6] 
G. C. Wu, D. Baleanu, Discrete chaos in fractional delayed logistic maps, Nonlinear Dynam., 80 (2015), 16971703. 
[7] 
L. Zou, A lower bound for the smallest singular value, J. Math. Inequal., 6 (2012), 625629. 
[1] 
Jiu Ding, Aihui Zhou. Absolutely continuous invariant measures for piecewise $C^2$ and expanding mappings in higher dimensions. Discrete & Continuous Dynamical Systems  A, 2000, 6 (2) : 451458. doi: 10.3934/dcds.2000.6.451 
[2] 
Lucia D. Simonelli. Absolutely continuous spectrum for parabolic flows/maps. Discrete & Continuous Dynamical Systems  A, 2018, 38 (1) : 263292. doi: 10.3934/dcds.2018013 
[3] 
Jawad AlKhal, Henk Bruin, Michael Jakobson. New examples of Sunimodal maps with a sigmafinite absolutely continuous invariant measure. Discrete & Continuous Dynamical Systems  A, 2008, 22 (1/2) : 3561. doi: 10.3934/dcds.2008.22.35 
[4] 
Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete & Continuous Dynamical Systems  A, 2009, 23 (3) : 685703. doi: 10.3934/dcds.2009.23.685 
[5] 
Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete & Continuous Dynamical Systems  A, 2011, 30 (3) : 917944. doi: 10.3934/dcds.2011.30.917 
[6] 
Lorenzo Sella, Pieter Collins. Computation of symbolic dynamics for twodimensional piecewiseaffine maps. Discrete & Continuous Dynamical Systems  B, 2011, 15 (3) : 739767. doi: 10.3934/dcdsb.2011.15.739 
[7] 
Xu Zhang. SinaiRuelleBowen measures for piecewise hyperbolic maps with two directions of instability in threedimensional spaces. Discrete & Continuous Dynamical Systems  A, 2016, 36 (5) : 28732886. doi: 10.3934/dcds.2016.36.2873 
[8] 
Daniel Schnellmann. Typical points for oneparameter families of piecewise expanding maps of the interval. Discrete & Continuous Dynamical Systems  A, 2011, 31 (3) : 877911. doi: 10.3934/dcds.2011.31.877 
[9] 
Nigel P. Byott, Mark Holland, Yiwei Zhang. On the mixing properties of piecewise expanding maps under composition with permutations. Discrete & Continuous Dynamical Systems  A, 2013, 33 (8) : 33653390. doi: 10.3934/dcds.2013.33.3365 
[10] 
Arno Berger, Roland Zweimüller. Invariant measures for general induced maps and towers. Discrete & Continuous Dynamical Systems  A, 2013, 33 (9) : 38853901. doi: 10.3934/dcds.2013.33.3885 
[11] 
Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalization of twodimensional piecewise linear maps: Abundance of 2D strange attractors. Discrete & Continuous Dynamical Systems  A, 2018, 38 (2) : 941966. doi: 10.3934/dcds.2018040 
[12] 
Xavier Bressaud. Expanding interval maps with intermittent behaviour, physical measures and time scales. Discrete & Continuous Dynamical Systems  A, 2004, 11 (2/3) : 517546. doi: 10.3934/dcds.2004.11.517 
[13] 
Begoña Alarcón, Sofia B. S. D. Castro, Isabel S. Labouriau. Global dynamics for symmetric planar maps. Discrete & Continuous Dynamical Systems  A, 2013, 33 (6) : 22412251. doi: 10.3934/dcds.2013.33.2241 
[14] 
Carlangelo Liverani. A footnote on expanding maps. Discrete & Continuous Dynamical Systems  A, 2013, 33 (8) : 37413751. doi: 10.3934/dcds.2013.33.3741 
[15] 
M. R. S. Kulenović, Orlando Merino. A global attractivity result for maps with invariant boxes . Discrete & Continuous Dynamical Systems  B, 2006, 6 (1) : 97110. doi: 10.3934/dcdsb.2006.6.97 
[16] 
Lorenzo Arona, Josep J. Masdemont. Computation of heteroclinic orbits between normally hyperbolic invariant 3spheres foliated by 2dimensional invariant Tori in Hill's problem. Conference Publications, 2007, 2007 (Special) : 6474. doi: 10.3934/proc.2007.2007.64 
[17] 
Fumihiko Nakamura. Asymptotic behavior of nonexpanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 117. doi: 10.3934/dcdsb.2018055 
[18] 
Xueting Tian, Paulo Varandas. Topological entropy of level sets of empirical measures for nonuniformly expanding maps. Discrete & Continuous Dynamical Systems  A, 2017, 37 (10) : 54075431. doi: 10.3934/dcds.2017235 
[19] 
Peter Haïssinsky, Kevin M. Pilgrim. Examples of coarse expanding conformal maps. Discrete & Continuous Dynamical Systems  A, 2012, 32 (7) : 24032416. doi: 10.3934/dcds.2012.32.2403 
[20] 
José F. Alves. Stochastic behavior of asymptotically expanding maps. Conference Publications, 2001, 2001 (Special) : 1421. doi: 10.3934/proc.2001.2001.14 
2016 Impact Factor: 1.099
Tools
Metrics
Other articles
by authors
[Back to Top]