2017, 37(8): 4309-4328. doi: 10.3934/dcds.2017184

Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one

1. 

West Building, Office No. 5W443 Department of Mathematics Education, Inha University 253 Yonghyun-Dong, Nam-Gu Incheon, 402-751, South Korea

2. 

Dipartimento di Matematica Largo Bruno Pontecorvo n. 5 56127, Pisa (PI), Italy

3. 

Faculty of Science and Engineering Waseda University 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Daniele Garrisi, E-mail address: daniele.garrisi@inha.ac.kr

Received  November 2016 Revised  March 2017 Published  April 2017

Fund Project: The first author was supported by INHA UNIVERSITY Research Grant through the project number 51747-01 titled "Stability in non-linear evolution equations". The second author was supported by University of Pisa, project no. PRA-2016-41 "Fenomeni singolari in problemi deterministici e stocastici ed applicazioni"; by INDAM, GNAMPA -Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni and by Institute of Mathematics and Informatics, Bulgarian Academy of Sciences and Top Global University Project, Waseda University

We prove that standing-waves which are solutions to the non-linear Schrödinger equation in dimension one, and whose profiles can be obtained as minima of the energy over the mass, are orbitally stable and non-degenerate, provided the non-linear term satisfies a Euler differential inequality. When the non-linear term is a combined pure power-type, then there is only one positive, symmetric minimum of prescribed mass.
Citation: Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184
References:
[1]

A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, vol. 34 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1993, Corrected reprint of the 1993 original.

[2]

J. Bellazzini, V. Benci, M. Ghimenti, A. M. Micheletti, On the existence of the fundamental eigenvalue of an elliptic problem in $\mathbb{R}^N$, Adv. Nonlinear Stud., 7 (2007), 439-458.

[3]

J. Bellazzini, G. Siciliano, Scaling properties of functionals and existence of constrained minimizers, J. Funct. Anal., 261 (2011), 2486-2507.

[4]

V. Benci, D. Fortunato, Hylomorphic solitons and charged Q-balls: Existence and stability, Chaos Solitons Fractals, 58 (2014), 1-15.

[5]

H. Berestycki, P. -L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.

[6]

H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.

[7]

T. Cazenave and P. -L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. , 85 (1982), 549-561, URL http://projecteuclid.org/getRecord?id=euclid.cmp/1103921547.MR0677997

[8]

T. Cazenave, Semilinear Schrödinger Equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 2003.

[9]

J. Dávila, M. del Pino, I. Guerra, Non-uniqueness of positive ground states of non-linear Schrödinger equations, Proc. Lond. Math. Soc. (3), 106 (2013), 318-344.

[10]

D. Garrisi, On the orbital stability of standing-waves solutions to a coupled non-linear KleinGordon equation, Adv. Nonlinear Stud., 12 (2012), 639-658.

[11]

M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry. Ⅰ, J. Funct. Anal., 74 (1987), 160-197.

[12]

E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, 2nd edition, American Mathematical Society, Providence, RI, 2001.

[13]

P. -L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145, URL http://www.numdam.org/item?id=AIHPC_1984__1_2_109_0.

[14]

J. Shatah and W. Strauss, Instability of nonlinear bound states, Comm. Math. Phys. , 100 (1985), 173-190, URL http://projecteuclid.org/getRecord?id=euclid.cmp/1103943442.

[15]

M. Shibata, Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term, Manuscripta Math., 143 (2014), 221-237.

[16]

X. Song, Stability and instability of standing waves to a system of Schrödinger equations with combined power-type nonlinearities, J. Math. Anal. Appl., 366 (2010), 345-359.

[17]

T. Tao, M. Visan, X. Zhang, The nonlinear Schrödinger equation with combined powertype nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343.

[18]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.

[19]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67.

show all references

References:
[1]

A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, vol. 34 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1993, Corrected reprint of the 1993 original.

[2]

J. Bellazzini, V. Benci, M. Ghimenti, A. M. Micheletti, On the existence of the fundamental eigenvalue of an elliptic problem in $\mathbb{R}^N$, Adv. Nonlinear Stud., 7 (2007), 439-458.

[3]

J. Bellazzini, G. Siciliano, Scaling properties of functionals and existence of constrained minimizers, J. Funct. Anal., 261 (2011), 2486-2507.

[4]

V. Benci, D. Fortunato, Hylomorphic solitons and charged Q-balls: Existence and stability, Chaos Solitons Fractals, 58 (2014), 1-15.

[5]

H. Berestycki, P. -L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.

[6]

H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.

[7]

T. Cazenave and P. -L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. , 85 (1982), 549-561, URL http://projecteuclid.org/getRecord?id=euclid.cmp/1103921547.MR0677997

[8]

T. Cazenave, Semilinear Schrödinger Equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 2003.

[9]

J. Dávila, M. del Pino, I. Guerra, Non-uniqueness of positive ground states of non-linear Schrödinger equations, Proc. Lond. Math. Soc. (3), 106 (2013), 318-344.

[10]

D. Garrisi, On the orbital stability of standing-waves solutions to a coupled non-linear KleinGordon equation, Adv. Nonlinear Stud., 12 (2012), 639-658.

[11]

M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry. Ⅰ, J. Funct. Anal., 74 (1987), 160-197.

[12]

E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, 2nd edition, American Mathematical Society, Providence, RI, 2001.

[13]

P. -L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145, URL http://www.numdam.org/item?id=AIHPC_1984__1_2_109_0.

[14]

J. Shatah and W. Strauss, Instability of nonlinear bound states, Comm. Math. Phys. , 100 (1985), 173-190, URL http://projecteuclid.org/getRecord?id=euclid.cmp/1103943442.

[15]

M. Shibata, Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term, Manuscripta Math., 143 (2014), 221-237.

[16]

X. Song, Stability and instability of standing waves to a system of Schrödinger equations with combined power-type nonlinearities, J. Math. Anal. Appl., 366 (2010), 345-359.

[17]

T. Tao, M. Visan, X. Zhang, The nonlinear Schrödinger equation with combined powertype nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343.

[18]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.

[19]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67.

[1]

Juncheng Wei, Wei Yao. Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1003-1011. doi: 10.3934/cpaa.2012.11.1003

[2]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[3]

Ru-Yu Lai. Global uniqueness for an inverse problem for the magnetic Schrödinger operator. Inverse Problems & Imaging, 2011, 5 (1) : 59-73. doi: 10.3934/ipi.2011.5.59

[4]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[5]

Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang, Tohru Ozawa. On the orbital stability of fractional Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1267-1282. doi: 10.3934/cpaa.2014.13.1267

[6]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[7]

Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631

[8]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[9]

Myeongju Chae, Soonsik Kwon. The stability of nonlinear Schrödinger equations with a potential in high Sobolev norms revisited. Communications on Pure & Applied Analysis, 2016, 15 (2) : 341-365. doi: 10.3934/cpaa.2016.15.341

[10]

François Genoud, Charles A. Stuart. Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 137-186. doi: 10.3934/dcds.2008.21.137

[11]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[12]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[13]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[14]

Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971

[15]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[16]

Alex H. Ardila. Stability of ground states for logarithmic Schrödinger equation with a $\delta^{'}$-interaction. Evolution Equations & Control Theory, 2017, 6 (2) : 155-175. doi: 10.3934/eect.2017009

[17]

Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221

[18]

Joel Andersson, Leo Tzou. Stability for a magnetic Schrödinger operator on a Riemann surface with boundary. Inverse Problems & Imaging, 2018, 12 (1) : 1-28. doi: 10.3934/ipi.2018001

[19]

Chunxiao Guo, Fan Cui, Yongqian Han. Global existence and uniqueness of the solution for the fractional Schrödinger-KdV-Burgers system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1687-1699. doi: 10.3934/dcdss.2016070

[20]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]