2017, 37(8): 4213-4230. doi: 10.3934/dcds.2017179

Positive ground state solutions for a quasilinear elliptic equation with critical exponent

School of Mathematics and Statistics, Central China Normal University Wuhan 430079, China

E-mail address: ybdeng@mail.ccnu.edu.cn

Received  October 2016 Revised  March 2017 Published  April 2017

In this paper, we study the following quasilinear elliptic equation with critical Sobolev exponent: $ -\Delta u +V(x)u-[\Delta(1+u^2)^{\frac 12}]\frac {u}{2(1+u^2)^\frac 12}=|u|^{2^*-2}u+|u|^{p-2}u, \quad x\in {{\mathbb{R}}^{N}}, $ which models the self-channeling of a high-power ultra short laser in matter, where N ≥ 3; 2 < p < 2 = $\frac{{2N}}{{N -2}}$ and V (x) is a given positive potential. Combining the change of variables and an abstract result developed by Jeanjean in [14], we obtain the existence of positive ground state solutions for the given problem.
Citation: Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179
References:
[1]

A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349-381.

[2]

H. Berestycki, P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.

[3]

João M. Bezerra do ó, Olímpio. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010), 722-744.

[4]

H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B, 5 (1993), 3539-3550.

[5]

H. Brezis, E. Lieb, A relation between pointwise convergence of function and convergence of functional, Proc. Amer. Math. Soc., 88 (1983), 486-490.

[6]

X. L. Chen, R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett., 70 (1993), 2082-2085.

[7]

M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal. TMA., 56 (2004), 213-226.

[8]

A. De Bouard, N. Hayashi, J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Commun. Math. Phys., 189 (1997), 73-105.

[9]

Y. Deng, S. Peng, S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differential Equations, 258 (2015), 115-147.

[10]

Y. Deng, S. Peng, S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, J. Differential Equations, 260 (2016), 1228-1262.

[11]

Y. Deng, S. Peng and S. Yan, Solitary wave solutions to a quasilinear Schrödinger equation modeling the self-channeling of a high-power ultrashort laser in matter, submitted.

[12]

M. F. Furtado, L. A. Maia, E. S. Medeiros, Positive and nodal solutions for a nonlinear Schrödinger equation with indefinite potential, Adv. Nonlinear Stud., 8 (2008), 353-373.

[13]

J. P. García Azorero, Alonso I. Peral, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations, 144 (1998), 441-476.

[14]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on ${{\mathbb{R}}.{N}}$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787-809.

[15]

L. Jeanjean, K. Tanaka, A positive solution for a nonlinear Schrödinger equation on ${{\mathbb{R}}^{N}}$, Indiana Univ. Math. J., 54 (2005), 443-464.

[16]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981), 3262-3267.

[17]

E. Laedke, K. Spatschek, L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764-2769.

[18]

H. F. Lins, E. A. B. Silva, Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal., 71 (2009), 2890-2905.

[19]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1987), 109-145.

[20]

J. Liu, Y. Wang, Z. Wang, Soliton solutions for quasilinear Schrödinger equations. Ⅱ, J. Differential Equations, 187 (2003), 473-493.

[21]

J. Liu, Y. Wang, Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004), 879-901.

[22]

J. Liu, Z. Wang, Soliton solutions for quasilinear Schrödinger equations. I, I, Proc. Amer. Math. Soc., 131 (2003), 441-448.

[23]

X. Liu, J. Liu, Z. Wang, Quasilinear elliptic equations with critical growth via perturbation method, J. Differential Equations, 254 (2013), 102-124.

[24]

X. Liu, J. Liu, Z. Wang, Ground states for quasilinear Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 46 (2013), 641-669.

[25]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in ${{\mathbb{R}}.{N}}$, J. Differential Equations, 229 (2006), 570-587.

[26]

M. Poppenberg, K. Schmitt, Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.

[27]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687-689.

[28]

Y. Shen, Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. TMA., 80 (2013), 194-201.

[29]

E. A. B. Silva, G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010), 1-33.

[30]

M. Willem, Minimax Theorems, Birkh¨auser, Boston, (1996).

[31]

J. Yang, Y. Wang, A. A. Abdelgadir, Soliton solutions for quasilinear Schrödinger equations, J. Math. Phys., 54 (), 071502.

[32]

J. Zhang, W. Zou, A Berestycki-Lions theorem revisited, Commun. Contemp. Math., 14 (), 1250033-14 pp.

[33]

X. Zhu, D. Cao, The concentration-compactness principle in nonlinear elliptic equations, Acta Math. Sci., 9 (), 307-328.

show all references

References:
[1]

A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349-381.

[2]

H. Berestycki, P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.

[3]

João M. Bezerra do ó, Olímpio. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010), 722-744.

[4]

H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B, 5 (1993), 3539-3550.

[5]

H. Brezis, E. Lieb, A relation between pointwise convergence of function and convergence of functional, Proc. Amer. Math. Soc., 88 (1983), 486-490.

[6]

X. L. Chen, R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett., 70 (1993), 2082-2085.

[7]

M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal. TMA., 56 (2004), 213-226.

[8]

A. De Bouard, N. Hayashi, J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Commun. Math. Phys., 189 (1997), 73-105.

[9]

Y. Deng, S. Peng, S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differential Equations, 258 (2015), 115-147.

[10]

Y. Deng, S. Peng, S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, J. Differential Equations, 260 (2016), 1228-1262.

[11]

Y. Deng, S. Peng and S. Yan, Solitary wave solutions to a quasilinear Schrödinger equation modeling the self-channeling of a high-power ultrashort laser in matter, submitted.

[12]

M. F. Furtado, L. A. Maia, E. S. Medeiros, Positive and nodal solutions for a nonlinear Schrödinger equation with indefinite potential, Adv. Nonlinear Stud., 8 (2008), 353-373.

[13]

J. P. García Azorero, Alonso I. Peral, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations, 144 (1998), 441-476.

[14]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on ${{\mathbb{R}}.{N}}$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787-809.

[15]

L. Jeanjean, K. Tanaka, A positive solution for a nonlinear Schrödinger equation on ${{\mathbb{R}}^{N}}$, Indiana Univ. Math. J., 54 (2005), 443-464.

[16]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981), 3262-3267.

[17]

E. Laedke, K. Spatschek, L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764-2769.

[18]

H. F. Lins, E. A. B. Silva, Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal., 71 (2009), 2890-2905.

[19]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1987), 109-145.

[20]

J. Liu, Y. Wang, Z. Wang, Soliton solutions for quasilinear Schrödinger equations. Ⅱ, J. Differential Equations, 187 (2003), 473-493.

[21]

J. Liu, Y. Wang, Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004), 879-901.

[22]

J. Liu, Z. Wang, Soliton solutions for quasilinear Schrödinger equations. I, I, Proc. Amer. Math. Soc., 131 (2003), 441-448.

[23]

X. Liu, J. Liu, Z. Wang, Quasilinear elliptic equations with critical growth via perturbation method, J. Differential Equations, 254 (2013), 102-124.

[24]

X. Liu, J. Liu, Z. Wang, Ground states for quasilinear Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 46 (2013), 641-669.

[25]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in ${{\mathbb{R}}.{N}}$, J. Differential Equations, 229 (2006), 570-587.

[26]

M. Poppenberg, K. Schmitt, Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.

[27]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687-689.

[28]

Y. Shen, Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. TMA., 80 (2013), 194-201.

[29]

E. A. B. Silva, G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010), 1-33.

[30]

M. Willem, Minimax Theorems, Birkh¨auser, Boston, (1996).

[31]

J. Yang, Y. Wang, A. A. Abdelgadir, Soliton solutions for quasilinear Schrödinger equations, J. Math. Phys., 54 (), 071502.

[32]

J. Zhang, W. Zou, A Berestycki-Lions theorem revisited, Commun. Contemp. Math., 14 (), 1250033-14 pp.

[33]

X. Zhu, D. Cao, The concentration-compactness principle in nonlinear elliptic equations, Acta Math. Sci., 9 (), 307-328.

[1]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[2]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[3]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[4]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[5]

Claudianor Oliveira Alves, M. A.S. Souto. On existence and concentration behavior of ground state solutions for a class of problems with critical growth . Communications on Pure & Applied Analysis, 2002, 1 (3) : 417-431. doi: 10.3934/cpaa.2002.1.417

[6]

Futoshi Takahashi. An eigenvalue problem related to blowing-up solutions for a semilinear elliptic equation with the critical Sobolev exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 907-922. doi: 10.3934/dcdss.2011.4.907

[7]

Jian Zhang, Wen Zhang, Xianhua Tang. Ground state solutions for Hamiltonian elliptic system with inverse square potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4565-4583. doi: 10.3934/dcds.2017195

[8]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[9]

Yavdat Il'yasov. On critical exponent for an elliptic equation with non-Lipschitz nonlinearity. Conference Publications, 2011, 2011 (Special) : 698-706. doi: 10.3934/proc.2011.2011.698

[10]

C. Cortázar, Marta García-Huidobro. On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian. Communications on Pure & Applied Analysis, 2006, 5 (4) : 813-826. doi: 10.3934/cpaa.2006.5.813

[11]

C. Cortázar, Marta García-Huidobro. On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian. Communications on Pure & Applied Analysis, 2006, 5 (1) : 71-84. doi: 10.3934/cpaa.2006.5.71

[12]

Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527

[13]

Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357

[14]

Joachim Krieger, Kenji Nakanishi, Wilhelm Schlag. Global dynamics of the nonradial energy-critical wave equation above the ground state energy. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2423-2450. doi: 10.3934/dcds.2013.33.2423

[15]

Kenji Nakanishi, Tristan Roy. Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2023-2058. doi: 10.3934/cpaa.2016026

[16]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent . Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[17]

Lingwei Ma, Zhong Bo Fang. A new second critical exponent and life span for a quasilinear degenerate parabolic equation with weighted nonlocal sources. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1697-1706. doi: 10.3934/cpaa.2017081

[18]

Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004

[19]

Yi He, Lu Lu, Wei Shuai. Concentrating ground-state solutions for a class of Schödinger-Poisson equations in $\mathbb{R}^3$ involving critical Sobolev exponents. Communications on Pure & Applied Analysis, 2016, 15 (1) : 103-125. doi: 10.3934/cpaa.2016.15.103

[20]

Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (3)
  • HTML views (4)
  • Cited by (0)

Other articles
by authors

[Back to Top]