# American Institute of Mathematical Sciences

• Previous Article
Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation
• DCDS Home
• This Issue
• Next Article
Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function
December  2016, 36(12): 6943-6974. doi: 10.3934/dcds.2016102

## Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity

 1 Organization for Promotion of Tenure Track, University of Miyazaki, 1-1, Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan 2 Division of Mathematics and Physics, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano City, 380-8553, Japan

Received  February 2016 Revised  March 2016 Published  October 2016

We consider the Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity $(i\partial _t + \Delta ) u= \pm \partial (\overline{u}^m)$ on $\mathbb{R} ^d$, $d \ge 1$, with random initial data, where $\partial$ is a first order derivative with respect to the spatial variable, for example a linear combination of $\frac{\partial}{\partial x_1} , \, \dots , \, \frac{\partial}{\partial x_d}$ or $|\nabla |= \mathcal{F}^{-1}[|\xi | \mathcal{F}]$. We prove that almost sure local in time well-posedness, small data global in time well-posedness and scattering hold in $H^s(\mathbb{R} ^d)$ with $s> \max \left( \frac{d-1}{d} s_c , \frac{s_c}{2}, s_c - \frac{d}{2(d+1)} \right)$ for $d+m \ge 5$, where $s$ is below the scaling critical regularity $s_c := \frac{d}{2}-\frac{1}{m-1}$.
Citation: Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102
##### References:
 [1] Á. Bényi, T. Oh and O. Pocovnicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS,, Excursion in Harmonic Analysis, 4 (2015), 3. doi: 10.1007/978-3-319-20188-7_1. Google Scholar [2] Á. Bényi, T. Oh and O. Pocovnicu, On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on $\mathbbR^d$, $d \ge 3$,, Trans. Amer. Math. Soc. Ser. B, 2 (2015), 1. doi: 10.1090/btran/6. Google Scholar [3] H. Biagioni and F. Linares, Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations,, Trans. Amer. Math. Soc., 353 (2001), 3649. doi: 10.1090/S0002-9947-01-02754-4. Google Scholar [4] J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures,, Comm. Math. Phys., 166 (1994), 1. doi: 10.1007/BF02099299. Google Scholar [5] J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrödinger equation,, Comm. Math. Phys., 176 (1996), 421. doi: 10.1007/BF02099556. Google Scholar [6] J. Bourgain, Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity,, Internat. Math. Res. Notices, (1998), 253. doi: 10.1155/S1073792898000191. Google Scholar [7] J. Bourgain and A. Bulut, Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball I: The 2D case,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 1267. doi: 10.1016/j.anihpc.2013.09.002. Google Scholar [8] J. Bourgain and A. Bulut, Almost sure global well-posedness for the radial nonlinear Schrödinger equation on the unit ball II: The 3d case,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1289. doi: 10.4171/JEMS/461. Google Scholar [9] N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations I: local theory,, Invent. Math., 173 (2008), 449. doi: 10.1007/s00222-008-0124-z. Google Scholar [10] N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations II: a global existence result,, Invent. Math., 173 (2008), 477. doi: 10.1007/s00222-008-0123-0. Google Scholar [11] N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1. doi: 10.4171/JEMS/426. Google Scholar [12] J. Colliander, J. Delort, C. Kenig and G. Staffilani, Bilinear estimates and applications to 2D NLS,, Trans. Amer. Math. Soc., 353 (2001), 3307. doi: 10.1090/S0002-9947-01-02760-X. Google Scholar [13] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness result for Schrödigner equations with derivative,, SIAM J. Math. Anal., 33 (2001), 649. doi: 10.1137/S0036141001384387. Google Scholar [14] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, A refined global well-posedness result for Schrödigner equations with derivative,, SIAM J. Math. Anal., 34 (2002), 64. doi: 10.1137/S0036141001394541. Google Scholar [15] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T.Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbbR^{3}$,, Ann. of Math., 167 (2008), 767. doi: 10.4007/annals.2008.167.767. Google Scholar [16] J. Colliander and T. Oh, Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(\mathbbT)$,, Duke Math. J., 161 (2012), 367. doi: 10.1215/00127094-1507400. Google Scholar [17] C. Deng and S. Cui, Random-data Cauchy problem for the Navier-Stokes equations on $\mathbbT ^3$,, J. Differential Equations, 251 (2011), 902. doi: 10.1016/j.jde.2011.05.002. Google Scholar [18] A. Grünrock, On the Cauchy - and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations,, , (). Google Scholar [19] M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space,, Ann. Inst. H. Poincaré, 26 (2009), 917. doi: 10.1016/j.anihpc.2008.04.002. Google Scholar [20] N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation,, Phys. D, 55 (1992), 14. doi: 10.1016/0167-2789(92)90185-P. Google Scholar [21] N. Hayashi, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space,, Nonlinear Anal., 20 (1993), 823. doi: 10.1016/0362-546X(93)90071-Y. Google Scholar [22] S. Herr, On the Cauchy Problem for the Derivative Nonlinear Schrödinger Equation with Periodic Boundary Condition,, Int. Math. Res. Not., (2006). doi: 10.1155/IMRN/2006/96763. Google Scholar [23] H. Hirayama, Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data,, Comm. Pure Appl. Anal., 13 (2014), 1563. doi: 10.3934/cpaa.2014.13.1563. Google Scholar [24] H. Hirayama, Well-posedness and scattering for nonlinear Schrödinger equations with a derivative nonlinearity at the scaling critical regularity,, Funkcialaj Ekvacioj, 58 (2015), 431. doi: 10.1619/fesi.58.431. Google Scholar [25] H. Hirayama and M. Okamoto, Random data Cauchy theory for the fourth order nonlinear Schrödinger equation with cubic nonlinearity,, , (). Google Scholar [26] S. Herr, D. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1 (\mathbbT^3)$,, Duke Math. J., 159 (2011), 329. doi: 10.1215/00127094-1415889. Google Scholar [27] M. Ikeda, N. Kishimoto and M. Okamoto, Well-posedness for a quadratic derivative nonlinear schrödinger system at the critical regularity,, Journal of Functional Analysis, 271 (2016), 747. doi: 10.1016/j.jfa.2016.05.009. Google Scholar [28] J. Lührmann and D. Mendelson, Random data Cauchy theory for nonlinear wave equations of power-type on $\mathbbR^3$,, Comm. Partial Differential Equations, 39 (2014), 2262. doi: 10.1080/03605302.2014.933239. Google Scholar [29] R. Mosincat and T. Oh, A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle,, C. R. Math. Acad. Sci. Paris, 353 (2015), 837. doi: 10.1016/j.crma.2015.06.015. Google Scholar [30] A. S. Nahmod and G. Staffilani, Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space,, J. Eur. Math. Soc. (JEMS), 17 (2015), 1687. doi: 10.4171/JEMS/543. Google Scholar [31] H. Takaoka, Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity,, Adv. Diff. Eqns., 4 (1999), 561. Google Scholar [32] H. Takaoka, Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces,, Electron. J. Diff. Eqns., 42 (2001), 1. Google Scholar [33] L. Thomann, Random data Cauchy problem for supercritical Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2385. doi: 10.1016/j.anihpc.2009.06.001. Google Scholar [34] Y. Wu, Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space,, Anal. PDE, 6 (2013), 1989. doi: 10.2140/apde.2013.6.1989. Google Scholar [35] T. Zhang and D. Fang, Random data Cauchy theory for the generalized incompressible Navier-Stokes equations,, J. Math. Fluid Mech., 14 (2012), 311. doi: 10.1007/s00021-011-0069-7. Google Scholar [36] S. Zhong, The Cauchy problem of null form wave equation on $\mathbbT^d$ with random initial data,, Funkcial. Ekvac., 55 (2012), 367. doi: 10.1619/fesi.55.367. Google Scholar

show all references

##### References:
 [1] Á. Bényi, T. Oh and O. Pocovnicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS,, Excursion in Harmonic Analysis, 4 (2015), 3. doi: 10.1007/978-3-319-20188-7_1. Google Scholar [2] Á. Bényi, T. Oh and O. Pocovnicu, On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on $\mathbbR^d$, $d \ge 3$,, Trans. Amer. Math. Soc. Ser. B, 2 (2015), 1. doi: 10.1090/btran/6. Google Scholar [3] H. Biagioni and F. Linares, Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations,, Trans. Amer. Math. Soc., 353 (2001), 3649. doi: 10.1090/S0002-9947-01-02754-4. Google Scholar [4] J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures,, Comm. Math. Phys., 166 (1994), 1. doi: 10.1007/BF02099299. Google Scholar [5] J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrödinger equation,, Comm. Math. Phys., 176 (1996), 421. doi: 10.1007/BF02099556. Google Scholar [6] J. Bourgain, Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity,, Internat. Math. Res. Notices, (1998), 253. doi: 10.1155/S1073792898000191. Google Scholar [7] J. Bourgain and A. Bulut, Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball I: The 2D case,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 1267. doi: 10.1016/j.anihpc.2013.09.002. Google Scholar [8] J. Bourgain and A. Bulut, Almost sure global well-posedness for the radial nonlinear Schrödinger equation on the unit ball II: The 3d case,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1289. doi: 10.4171/JEMS/461. Google Scholar [9] N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations I: local theory,, Invent. Math., 173 (2008), 449. doi: 10.1007/s00222-008-0124-z. Google Scholar [10] N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations II: a global existence result,, Invent. Math., 173 (2008), 477. doi: 10.1007/s00222-008-0123-0. Google Scholar [11] N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1. doi: 10.4171/JEMS/426. Google Scholar [12] J. Colliander, J. Delort, C. Kenig and G. Staffilani, Bilinear estimates and applications to 2D NLS,, Trans. Amer. Math. Soc., 353 (2001), 3307. doi: 10.1090/S0002-9947-01-02760-X. Google Scholar [13] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness result for Schrödigner equations with derivative,, SIAM J. Math. Anal., 33 (2001), 649. doi: 10.1137/S0036141001384387. Google Scholar [14] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, A refined global well-posedness result for Schrödigner equations with derivative,, SIAM J. Math. Anal., 34 (2002), 64. doi: 10.1137/S0036141001394541. Google Scholar [15] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T.Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbbR^{3}$,, Ann. of Math., 167 (2008), 767. doi: 10.4007/annals.2008.167.767. Google Scholar [16] J. Colliander and T. Oh, Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(\mathbbT)$,, Duke Math. J., 161 (2012), 367. doi: 10.1215/00127094-1507400. Google Scholar [17] C. Deng and S. Cui, Random-data Cauchy problem for the Navier-Stokes equations on $\mathbbT ^3$,, J. Differential Equations, 251 (2011), 902. doi: 10.1016/j.jde.2011.05.002. Google Scholar [18] A. Grünrock, On the Cauchy - and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations,, , (). Google Scholar [19] M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space,, Ann. Inst. H. Poincaré, 26 (2009), 917. doi: 10.1016/j.anihpc.2008.04.002. Google Scholar [20] N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation,, Phys. D, 55 (1992), 14. doi: 10.1016/0167-2789(92)90185-P. Google Scholar [21] N. Hayashi, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space,, Nonlinear Anal., 20 (1993), 823. doi: 10.1016/0362-546X(93)90071-Y. Google Scholar [22] S. Herr, On the Cauchy Problem for the Derivative Nonlinear Schrödinger Equation with Periodic Boundary Condition,, Int. Math. Res. Not., (2006). doi: 10.1155/IMRN/2006/96763. Google Scholar [23] H. Hirayama, Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data,, Comm. Pure Appl. Anal., 13 (2014), 1563. doi: 10.3934/cpaa.2014.13.1563. Google Scholar [24] H. Hirayama, Well-posedness and scattering for nonlinear Schrödinger equations with a derivative nonlinearity at the scaling critical regularity,, Funkcialaj Ekvacioj, 58 (2015), 431. doi: 10.1619/fesi.58.431. Google Scholar [25] H. Hirayama and M. Okamoto, Random data Cauchy theory for the fourth order nonlinear Schrödinger equation with cubic nonlinearity,, , (). Google Scholar [26] S. Herr, D. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1 (\mathbbT^3)$,, Duke Math. J., 159 (2011), 329. doi: 10.1215/00127094-1415889. Google Scholar [27] M. Ikeda, N. Kishimoto and M. Okamoto, Well-posedness for a quadratic derivative nonlinear schrödinger system at the critical regularity,, Journal of Functional Analysis, 271 (2016), 747. doi: 10.1016/j.jfa.2016.05.009. Google Scholar [28] J. Lührmann and D. Mendelson, Random data Cauchy theory for nonlinear wave equations of power-type on $\mathbbR^3$,, Comm. Partial Differential Equations, 39 (2014), 2262. doi: 10.1080/03605302.2014.933239. Google Scholar [29] R. Mosincat and T. Oh, A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle,, C. R. Math. Acad. Sci. Paris, 353 (2015), 837. doi: 10.1016/j.crma.2015.06.015. Google Scholar [30] A. S. Nahmod and G. Staffilani, Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space,, J. Eur. Math. Soc. (JEMS), 17 (2015), 1687. doi: 10.4171/JEMS/543. Google Scholar [31] H. Takaoka, Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity,, Adv. Diff. Eqns., 4 (1999), 561. Google Scholar [32] H. Takaoka, Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces,, Electron. J. Diff. Eqns., 42 (2001), 1. Google Scholar [33] L. Thomann, Random data Cauchy problem for supercritical Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2385. doi: 10.1016/j.anihpc.2009.06.001. Google Scholar [34] Y. Wu, Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space,, Anal. PDE, 6 (2013), 1989. doi: 10.2140/apde.2013.6.1989. Google Scholar [35] T. Zhang and D. Fang, Random data Cauchy theory for the generalized incompressible Navier-Stokes equations,, J. Math. Fluid Mech., 14 (2012), 311. doi: 10.1007/s00021-011-0069-7. Google Scholar [36] S. Zhong, The Cauchy problem of null form wave equation on $\mathbbT^d$ with random initial data,, Funkcial. Ekvac., 55 (2012), 367. doi: 10.1619/fesi.55.367. Google Scholar
 [1] Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469 [2] Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431 [3] Binhua Feng, Dun Zhao. On the Cauchy problem for the XFEL Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4171-4186. doi: 10.3934/dcdsb.2018131 [4] Yang Han. On the cauchy problem for the coupled Klein Gordon Schrödinger system with rough data. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 233-242. doi: 10.3934/dcds.2005.12.233 [5] Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703 [6] Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027 [7] Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123 [8] Wolfgang Wagner. A random cloud model for the Schrödinger equation. Kinetic & Related Models, 2014, 7 (2) : 361-379. doi: 10.3934/krm.2014.7.361 [9] Shubin Wang, Guowang Chen. Cauchy problem for the nonlinear Schrödinger-IMBq equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 203-214. doi: 10.3934/dcdsb.2006.6.203 [10] Carlos Kenig, Tobias Lamm, Daniel Pollack, Gigliola Staffilani, Tatiana Toro. The Cauchy problem for Schrödinger flows into Kähler manifolds. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 389-439. doi: 10.3934/dcds.2010.27.389 [11] Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959 [12] Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169 [13] Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181 [14] V. Varlamov, Yue Liu. Cauchy problem for the Ostrovsky equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 731-753. doi: 10.3934/dcds.2004.10.731 [15] Adrien Dekkers, Anna Rozanova-Pierrat. Cauchy problem for the Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 277-307. doi: 10.3934/dcds.2019012 [16] Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033 [17] Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems & Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034 [18] Rudong Zheng, Zhaoyang Yin. The Cauchy problem for a generalized Novikov equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3503-3519. doi: 10.3934/dcds.2017149 [19] Kenji Nakanishi, Tristan Roy. Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2023-2058. doi: 10.3934/cpaa.2016026 [20] Benoît Pausader. The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1275-1292. doi: 10.3934/dcds.2009.24.1275

2018 Impact Factor: 1.143