2016, 36(11): 6133-6166. doi: 10.3934/dcds.2016068

Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential

1. 

Department of Mathematics, University of Bari Aldo Moro, Via E.Orabona 4, 70125 Bari

2. 

Department of Mathematics and Computer Sciences, University of Perugia, Via Vanvitelli 1, 06123 Perugia

3. 

Department of Mathematics, National Technical University, Zografou Campus, Athens 15780

Received  November 2015 Revised  April 2016 Published  August 2016

We consider a parametric nonlinear Robin problem driven by the $p -$Laplacian plus an indefinite potential and a Carathéodory reaction which is $(p-1) -$ superlinear without satisfying the Ambrosetti - Rabinowitz condition. We prove a bifurcation-type result describing the dependence of the set of positive solutions on the parameter. We also prove the existence of nodal solutions. Our proofs use tools from critical point theory, Morse theory and suitable truncation techniques.
Citation: Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6133-6166. doi: 10.3934/dcds.2016068
References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations with Inequality Constraints,, Mem. Amer. Math. Soc., 196 (2008). doi: 10.1090/memo/0915.

[2]

W. Allegretto and Y. X. Huang, A Picone's identity for the $p -$Laplacian and applications,, Nonlinear Anal., 32 (1998), 819. doi: 10.1016/S0362-546X(97)00530-0.

[3]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Functional Anal., 14 (1973), 349. doi: 10.1016/0022-1236(73)90051-7.

[4]

D. Arcoya and D. Ruiz, The Ambrosetti-Prodi problem for the $p-$Laplacian operator,, Comm. Partial Differential Equations, 31 (2006), 849. doi: 10.1080/03605300500394447.

[5]

F. Brock, L. Iturriaga and P. Ubilla, A multiplicity result for the $p -$Laplacian involving a parameter,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (2008), 349. doi: 10.1007/s00023-008-0386-4.

[6]

T. Cardinali, N. S. Papageorgiou and P. Rubbioni, Bifurcation phenomena for nonlinear superdiffusive Neumann equations of logistic type,, Ann. Mat. Pura Appl. (4), 193 (2013), 1. doi: 10.1007/s10231-012-0263-0.

[7]

J. N. Corvellec and A. Hantoute, Homotopical stability of isolated critical points of continuous functionals,, Set-Valued Analysis, 10 (2002), 143. doi: 10.1023/A:1016544301594.

[8]

J. I. Diaz and J. E. Saa, Existence et unicité de solutions positives pur certaines équations elliptiques quasilinéaires,, C. R. Math. Acad. Sci. Paris, 305 (1987), 521.

[9]

M. Filippakis and N. S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear elliptic equations with the $p -$Laplacian,, J. Differential Equations, 245 (2008), 1883. doi: 10.1016/j.jde.2008.07.004.

[10]

G. Fragnelli, D. Mugnai and N. S. Papageorgiou, Superlinear Neumann problems with the $p -$Laplacian plus an indefinite potential,, Ann. Mat. Pura Appl. (4), (). doi: 10.1007/s10231-016-0582-7.

[11]

L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis,, Series in Mathematical Analysis and Applications 9, (2006).

[12]

L. Gasinski and N. S. Papageorgiou, Bifurcation - type results for nonlinear parametric elliptic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 595. doi: 10.1017/S0308210511000126.

[13]

M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents,, Nonlinear Anal., 13 (1989), 879. doi: 10.1016/0362-546X(89)90020-5.

[14]

S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis,, Kluwer, (1997).

[15]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations,, Nonlinear Anal., 12 (1988), 1203. doi: 10.1016/0362-546X(88)90053-3.

[16]

V. Moroz, Solutions of superlinear at zero elliptic equations via Morse theory,, Topol. Methods Nonlinear Anal., 10 (1997), 387.

[17]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear Neumann eigenvalue problems,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), (2011), 729.

[18]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems,, Springer, (2014). doi: 10.1007/978-1-4614-9323-5.

[19]

D. Mugnai, Addendum to Multiplicity of critical points in presence of a linking: Application to a superlinear boundary value problem,, NoDEA. Nonlinear Differential Equations Appl., 11 (2004), 379. doi: 10.1007/s00030-004-2016-2.

[20]

D. Mugnai and N. S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), XI (2012), 729.

[21]

D. Mugnai and N. S. Papageorgiou, Wang's multiplicity result for superlinear $(p,q)$ - equations without the Ambrosetti - Rabinowitz condition,, Trans. Amer. Math. Soc., 366 (2014), 4919. doi: 10.1090/S0002-9947-2013-06124-7.

[22]

D. Mugnai and N. S. Papageorgiou, Bifurcation for positive solutions of nonlinear diffusive logistic equations in $\mathbbR^N$ with indefinite weight,, Indiana Univ. Math. J., 63 (2014), 1397. doi: 10.1512/iumj.2014.63.5369.

[23]

N. S. Papageorgiou and V. Radulescu, Multiple solutions with precise sign information for nonlinear Robin problems,, J. Differential Equations, 256 (2014), 2449. doi: 10.1016/j.jde.2014.01.010.

[24]

N.S. Papageorgiou and V. Radulescu, Positive solutions for nonlinear Robin eigenvalue problems,, Proc. Amer. Math. Soc., (). doi: 10.1090/proc/13107.

[25]

N. S. Papageorgiou and V. Radulescu, Nonlinear, nonhomogeneous Robin problems with superlinear reaction term,, submitted., ().

[26]

N. S. Papageorgiou and P. Winkert, Resonant $(p,2) -$ equations with concave terms,, Appl. Anal., 94 (2015), 342. doi: 10.1080/00036811.2014.895332.

[27]

P. Pucci and J. Serrin, The Maximum Principle,, Progress in Nonlinear Differential Equations and their Applications 73, (2007).

[28]

S. Takeuchi, Positive solutions of a degenerate elliptic equation with a logistic reaction,, Proc. Amer. Math. Soc., 129 (2001), 433. doi: 10.1090/S0002-9939-00-05723-3.

[29]

S. Takeuchi, Multiplicity results for a degenerate elliptic equation with a logistic reaction,, J. Differential Equations, 173 (2001), 138. doi: 10.1006/jdeq.2000.3914.

[30]

P. Winkert, $L^\infty$-estimates for nonlinear elliptic Neumann boundary value problems,, NoDEA. Nonlinear Differential Equations Appl., 17 (2010), 289. doi: 10.1007/s00030-009-0054-5.

show all references

References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations with Inequality Constraints,, Mem. Amer. Math. Soc., 196 (2008). doi: 10.1090/memo/0915.

[2]

W. Allegretto and Y. X. Huang, A Picone's identity for the $p -$Laplacian and applications,, Nonlinear Anal., 32 (1998), 819. doi: 10.1016/S0362-546X(97)00530-0.

[3]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Functional Anal., 14 (1973), 349. doi: 10.1016/0022-1236(73)90051-7.

[4]

D. Arcoya and D. Ruiz, The Ambrosetti-Prodi problem for the $p-$Laplacian operator,, Comm. Partial Differential Equations, 31 (2006), 849. doi: 10.1080/03605300500394447.

[5]

F. Brock, L. Iturriaga and P. Ubilla, A multiplicity result for the $p -$Laplacian involving a parameter,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (2008), 349. doi: 10.1007/s00023-008-0386-4.

[6]

T. Cardinali, N. S. Papageorgiou and P. Rubbioni, Bifurcation phenomena for nonlinear superdiffusive Neumann equations of logistic type,, Ann. Mat. Pura Appl. (4), 193 (2013), 1. doi: 10.1007/s10231-012-0263-0.

[7]

J. N. Corvellec and A. Hantoute, Homotopical stability of isolated critical points of continuous functionals,, Set-Valued Analysis, 10 (2002), 143. doi: 10.1023/A:1016544301594.

[8]

J. I. Diaz and J. E. Saa, Existence et unicité de solutions positives pur certaines équations elliptiques quasilinéaires,, C. R. Math. Acad. Sci. Paris, 305 (1987), 521.

[9]

M. Filippakis and N. S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear elliptic equations with the $p -$Laplacian,, J. Differential Equations, 245 (2008), 1883. doi: 10.1016/j.jde.2008.07.004.

[10]

G. Fragnelli, D. Mugnai and N. S. Papageorgiou, Superlinear Neumann problems with the $p -$Laplacian plus an indefinite potential,, Ann. Mat. Pura Appl. (4), (). doi: 10.1007/s10231-016-0582-7.

[11]

L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis,, Series in Mathematical Analysis and Applications 9, (2006).

[12]

L. Gasinski and N. S. Papageorgiou, Bifurcation - type results for nonlinear parametric elliptic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 595. doi: 10.1017/S0308210511000126.

[13]

M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents,, Nonlinear Anal., 13 (1989), 879. doi: 10.1016/0362-546X(89)90020-5.

[14]

S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis,, Kluwer, (1997).

[15]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations,, Nonlinear Anal., 12 (1988), 1203. doi: 10.1016/0362-546X(88)90053-3.

[16]

V. Moroz, Solutions of superlinear at zero elliptic equations via Morse theory,, Topol. Methods Nonlinear Anal., 10 (1997), 387.

[17]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear Neumann eigenvalue problems,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), (2011), 729.

[18]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems,, Springer, (2014). doi: 10.1007/978-1-4614-9323-5.

[19]

D. Mugnai, Addendum to Multiplicity of critical points in presence of a linking: Application to a superlinear boundary value problem,, NoDEA. Nonlinear Differential Equations Appl., 11 (2004), 379. doi: 10.1007/s00030-004-2016-2.

[20]

D. Mugnai and N. S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), XI (2012), 729.

[21]

D. Mugnai and N. S. Papageorgiou, Wang's multiplicity result for superlinear $(p,q)$ - equations without the Ambrosetti - Rabinowitz condition,, Trans. Amer. Math. Soc., 366 (2014), 4919. doi: 10.1090/S0002-9947-2013-06124-7.

[22]

D. Mugnai and N. S. Papageorgiou, Bifurcation for positive solutions of nonlinear diffusive logistic equations in $\mathbbR^N$ with indefinite weight,, Indiana Univ. Math. J., 63 (2014), 1397. doi: 10.1512/iumj.2014.63.5369.

[23]

N. S. Papageorgiou and V. Radulescu, Multiple solutions with precise sign information for nonlinear Robin problems,, J. Differential Equations, 256 (2014), 2449. doi: 10.1016/j.jde.2014.01.010.

[24]

N.S. Papageorgiou and V. Radulescu, Positive solutions for nonlinear Robin eigenvalue problems,, Proc. Amer. Math. Soc., (). doi: 10.1090/proc/13107.

[25]

N. S. Papageorgiou and V. Radulescu, Nonlinear, nonhomogeneous Robin problems with superlinear reaction term,, submitted., ().

[26]

N. S. Papageorgiou and P. Winkert, Resonant $(p,2) -$ equations with concave terms,, Appl. Anal., 94 (2015), 342. doi: 10.1080/00036811.2014.895332.

[27]

P. Pucci and J. Serrin, The Maximum Principle,, Progress in Nonlinear Differential Equations and their Applications 73, (2007).

[28]

S. Takeuchi, Positive solutions of a degenerate elliptic equation with a logistic reaction,, Proc. Amer. Math. Soc., 129 (2001), 433. doi: 10.1090/S0002-9939-00-05723-3.

[29]

S. Takeuchi, Multiplicity results for a degenerate elliptic equation with a logistic reaction,, J. Differential Equations, 173 (2001), 138. doi: 10.1006/jdeq.2000.3914.

[30]

P. Winkert, $L^\infty$-estimates for nonlinear elliptic Neumann boundary value problems,, NoDEA. Nonlinear Differential Equations Appl., 17 (2010), 289. doi: 10.1007/s00030-009-0054-5.

[1]

Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 257-277. doi: 10.3934/dcdss.2018014

[2]

Santiago Cano-Casanova. Bifurcation to positive solutions in BVPs of logistic type with nonlinear indefinite mixed boundary conditions. Conference Publications, 2013, 2013 (special) : 95-104. doi: 10.3934/proc.2013.2013.95

[3]

Nikolaos S. Papageorgiou, Vicenţiu D. Rǎdulescu, Dušan D. Repovš. Nodal solutions for the Robin p-Laplacian plus an indefinite potential and a general reaction term. Communications on Pure & Applied Analysis, 2018, 17 (1) : 231-241. doi: 10.3934/cpaa.2018014

[4]

Rushun Tian, Zhi-Qiang Wang. Bifurcation results on positive solutions of an indefinite nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 335-344. doi: 10.3934/dcds.2013.33.335

[5]

M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight . Communications on Pure & Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411

[6]

Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436-445. doi: 10.3934/proc.2015.0436

[7]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[8]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2589-2618. doi: 10.3934/dcds.2017111

[9]

Zuji Guo. Nodal solutions for nonlinear Schrödinger equations with decaying potential. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1125-1138. doi: 10.3934/cpaa.2016.15.1125

[10]

Julián López-Góme, Andrea Tellini, F. Zanolin. High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems. Communications on Pure & Applied Analysis, 2014, 13 (1) : 1-73. doi: 10.3934/cpaa.2014.13.1

[11]

M. Grossi, P. Magrone, M. Matzeu. Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 703-718. doi: 10.3934/dcds.2001.7.703

[12]

Ryuji Kajikiya, Daisuke Naimen. Two sequences of solutions for indefinite superlinear-sublinear elliptic equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1593-1612. doi: 10.3934/cpaa.2014.13.1593

[13]

Vladimir Lubyshev. Precise range of the existence of positive solutions of a nonlinear, indefinite in sign Neumann problem. Communications on Pure & Applied Analysis, 2009, 8 (3) : 999-1018. doi: 10.3934/cpaa.2009.8.999

[14]

Michael E. Filippakis, Donal O'Regan, Nikolaos S. Papageorgiou. Positive solutions and bifurcation phenomena for nonlinear elliptic equations of logistic type: The superdiffusive case. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1507-1527. doi: 10.3934/cpaa.2010.9.1507

[15]

Shouchuan Hu, Nikolaos S. Papageorgiou. Positive solutions for Robin problems with general potential and logistic reaction. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2489-2507. doi: 10.3934/cpaa.2016046

[16]

Guozhen Lu and Juncheng Wei. On positive entire solutions to the Yamabe-type problem on the Heisenberg and stratified groups. Electronic Research Announcements, 1997, 3: 83-89.

[17]

Thomas Bartsch, Zhongwei Tang. Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 7-26. doi: 10.3934/dcds.2013.33.7

[18]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[19]

Leszek Gasiński, Nikolaos S. Papageorgiou. Multiplicity of solutions for Neumann problems with an indefinite and unbounded potential. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1985-1999. doi: 10.3934/cpaa.2013.12.1985

[20]

Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (1)

[Back to Top]