2016, 36(2): 785-803. doi: 10.3934/dcds.2016.36.785

$2\pi$-Periodic self-similar solutions for the anisotropic affine curve shortening problem II

1. 

LMAM, School of Mathematical Sciences, Peking University, Beijing, 100871, China

2. 

Department of Mathematics, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Received  April 2014 Published  August 2015

The existence of $2\pi$-periodic positive solutions of the equation $$ u'' + u = \displaystyle{\frac{a(x)}{u^3}} $$ is studied, where $a$ is a positive smooth $2\pi$-periodic function. Under some non-degenerate conditions on $a$, the existence of $2\pi$-periodic solutions to the equation is established.
Citation: Meiyue Jiang, Juncheng Wei. $2\pi$-Periodic self-similar solutions for the anisotropic affine curve shortening problem II. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 785-803. doi: 10.3934/dcds.2016.36.785
References:
[1]

U. Abresch and J. Langer, The normalized curved shortening flow and homothetic solutions,, J. Differential Geometry, 23 (1986), 175.

[2]

J. Ai, K. S. Chou and J. Wei, Self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var., 13 (2001), 311. doi: 10.1007/s005260000075.

[3]

S. Altschuler, Singularities of the curve shrinking flow for space curves,, J. Differential Geometry, 34 (1991), 491.

[4]

B. Andrews, Contraction of convex hypersurfaces by their affine normal,, J. Differential Geometry, 43 (1996), 207.

[5]

B. Andrews, Evolving convex curves,, Calc. Var., 7 (1998), 315. doi: 10.1007/s005260050111.

[6]

S. Angenent, On the formation of singularities in the curve shortening flow,, J. Differential Geometry, 33 (1991), 601.

[7]

S. Angenent and M. E. Gurtin, Multiphase thermodynamics with interfacial structure evolution of an isothermal interface,, Arch. Rational Mech. Anal., 108 (1989), 323. doi: 10.1007/BF01041068.

[8]

W. X. Chen, $L_p$-Minkowski problem with not necessarily positive data,, Adv. in Math., 201 (2006), 77. doi: 10.1016/j.aim.2004.11.007.

[9]

K. S. Chou and L. Zhang, On the uniqueness of stable ultimate shapes for the anisotropic curve-shorting problem,, Manuscripta Math., 102 (2000), 101. doi: 10.1007/s002291020101.

[10]

K. S. Chou and X. P. Zhu, Anisotropic flows for convex plane curves,, Duke Math. J., 97 (1999), 579. doi: 10.1215/S0012-7094-99-09722-3.

[11]

M. del Pino, R. Manásevich and A. Montero, $T$-periodic solutions for some second order differential equation with singularities,, Proc. Roy. Soc. Edinburgh, 120 (1992), 231. doi: 10.1017/S030821050003211X.

[12]

C. Dohmen and Y. Giga, Self-similar shrinking curves for anisotropic curvature flow equations,, Proc. Japan Acad., 70 (1994), 252. doi: 10.3792/pjaa.70.252.

[13]

C. Dohmen, Y. Giga and N. Mizoguchi, Existence of self-similar shrinking curves for anisotropic curvature flow equations,, Calc. Var., 4 (1996), 103. doi: 10.1007/BF01189949.

[14]

I. Fonseca and W. Gangbo, Degree Theory in Analysis and Applications,, Oxford Science Publications, (1995).

[15]

M. E. Gage, Evolving plane curve by curvature in relative geometries,, Duke Math. J., 72 (1993), 441. doi: 10.1215/S0012-7094-93-07216-X.

[16]

M. E. Gage and R. Hamilton, The heat equation shrinking convex plane curves,, J. Differential Geometry, 23 (1986), 69.

[17]

M. E. Gage and Y. Li, Evolving plane curve by curvature in relative geometries II,, Duke Math. J., 75 (1994), 79. doi: 10.1215/S0012-7094-94-07503-0.

[18]

M. Grayson, The heat equation shrinking embedded curves to round points,, J. Differential Geometry, 26 (1987), 285.

[19]

M. E. Gurtin, Thermodynamics of Evolving Phase Boundaries in the Plane,, Clarendon Press, (1993).

[20]

M.-Y. Jiang, Remarks on the 2-dimensional $L_p$-Minkowski problem,, Advanced Nonlinear Studies, 10 (2010), 297.

[21]

M.-Y. Jiang, L. Wang and J. Wei, $2\pi$-periodic self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var., 41 (2011), 535. doi: 10.1007/s00526-010-0375-6.

[22]

H. Matano and J. Wei, On anisotropic curvature flow equations,, preprint., ().

[23]

G. Sapiro and A. Tannenbaum, On affine plane curve evolution,, J. Funct. Anal., 119 (1994), 79. doi: 10.1006/jfan.1994.1004.

show all references

References:
[1]

U. Abresch and J. Langer, The normalized curved shortening flow and homothetic solutions,, J. Differential Geometry, 23 (1986), 175.

[2]

J. Ai, K. S. Chou and J. Wei, Self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var., 13 (2001), 311. doi: 10.1007/s005260000075.

[3]

S. Altschuler, Singularities of the curve shrinking flow for space curves,, J. Differential Geometry, 34 (1991), 491.

[4]

B. Andrews, Contraction of convex hypersurfaces by their affine normal,, J. Differential Geometry, 43 (1996), 207.

[5]

B. Andrews, Evolving convex curves,, Calc. Var., 7 (1998), 315. doi: 10.1007/s005260050111.

[6]

S. Angenent, On the formation of singularities in the curve shortening flow,, J. Differential Geometry, 33 (1991), 601.

[7]

S. Angenent and M. E. Gurtin, Multiphase thermodynamics with interfacial structure evolution of an isothermal interface,, Arch. Rational Mech. Anal., 108 (1989), 323. doi: 10.1007/BF01041068.

[8]

W. X. Chen, $L_p$-Minkowski problem with not necessarily positive data,, Adv. in Math., 201 (2006), 77. doi: 10.1016/j.aim.2004.11.007.

[9]

K. S. Chou and L. Zhang, On the uniqueness of stable ultimate shapes for the anisotropic curve-shorting problem,, Manuscripta Math., 102 (2000), 101. doi: 10.1007/s002291020101.

[10]

K. S. Chou and X. P. Zhu, Anisotropic flows for convex plane curves,, Duke Math. J., 97 (1999), 579. doi: 10.1215/S0012-7094-99-09722-3.

[11]

M. del Pino, R. Manásevich and A. Montero, $T$-periodic solutions for some second order differential equation with singularities,, Proc. Roy. Soc. Edinburgh, 120 (1992), 231. doi: 10.1017/S030821050003211X.

[12]

C. Dohmen and Y. Giga, Self-similar shrinking curves for anisotropic curvature flow equations,, Proc. Japan Acad., 70 (1994), 252. doi: 10.3792/pjaa.70.252.

[13]

C. Dohmen, Y. Giga and N. Mizoguchi, Existence of self-similar shrinking curves for anisotropic curvature flow equations,, Calc. Var., 4 (1996), 103. doi: 10.1007/BF01189949.

[14]

I. Fonseca and W. Gangbo, Degree Theory in Analysis and Applications,, Oxford Science Publications, (1995).

[15]

M. E. Gage, Evolving plane curve by curvature in relative geometries,, Duke Math. J., 72 (1993), 441. doi: 10.1215/S0012-7094-93-07216-X.

[16]

M. E. Gage and R. Hamilton, The heat equation shrinking convex plane curves,, J. Differential Geometry, 23 (1986), 69.

[17]

M. E. Gage and Y. Li, Evolving plane curve by curvature in relative geometries II,, Duke Math. J., 75 (1994), 79. doi: 10.1215/S0012-7094-94-07503-0.

[18]

M. Grayson, The heat equation shrinking embedded curves to round points,, J. Differential Geometry, 26 (1987), 285.

[19]

M. E. Gurtin, Thermodynamics of Evolving Phase Boundaries in the Plane,, Clarendon Press, (1993).

[20]

M.-Y. Jiang, Remarks on the 2-dimensional $L_p$-Minkowski problem,, Advanced Nonlinear Studies, 10 (2010), 297.

[21]

M.-Y. Jiang, L. Wang and J. Wei, $2\pi$-periodic self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var., 41 (2011), 535. doi: 10.1007/s00526-010-0375-6.

[22]

H. Matano and J. Wei, On anisotropic curvature flow equations,, preprint., ().

[23]

G. Sapiro and A. Tannenbaum, On affine plane curve evolution,, J. Funct. Anal., 119 (1994), 79. doi: 10.1006/jfan.1994.1004.

[1]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

[2]

Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002

[3]

Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101

[4]

Bendong Lou. Self-similar solutions in a sector for a quasilinear parabolic equation. Networks & Heterogeneous Media, 2012, 7 (4) : 857-879. doi: 10.3934/nhm.2012.7.857

[5]

F. Berezovskaya, G. Karev. Bifurcations of self-similar solutions of the Fokker-Plank equations. Conference Publications, 2005, 2005 (Special) : 91-99. doi: 10.3934/proc.2005.2005.91

[6]

Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897

[7]

Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to self-similar solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 703-716. doi: 10.3934/dcds.2008.21.703

[8]

Hyungjin Huh. Self-similar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations & Control Theory, 2018, 7 (1) : 53-60. doi: 10.3934/eect.2018003

[9]

Hideo Kubo, Kotaro Tsugawa. Global solutions and self-similar solutions of the coupled system of semilinear wave equations in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 471-482. doi: 10.3934/dcds.2003.9.471

[10]

Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817

[11]

Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47

[12]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

[13]

K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

[14]

D. G. Aronson. Self-similar focusing in porous media: An explicit calculation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1685-1691. doi: 10.3934/dcdsb.2012.17.1685

[15]

G. A. Braga, Frederico Furtado, Vincenzo Isaia. Renormalization group calculation of asymptotically self-similar dynamics. Conference Publications, 2005, 2005 (Special) : 131-141. doi: 10.3934/proc.2005.2005.131

[16]

Shota Sato, Eiji Yanagida. Forward self-similar solution with a moving singularity for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 313-331. doi: 10.3934/dcds.2010.26.313

[17]

L. Olsen. Rates of convergence towards the boundary of a self-similar set. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 799-811. doi: 10.3934/dcds.2007.19.799

[18]

Rostislav Grigorchuk, Volodymyr Nekrashevych. Self-similar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323-370. doi: 10.3934/jmd.2007.1.323

[19]

Christoph Bandt, Helena Peña. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198

[20]

Anna Chiara Lai, Paola Loreti. Self-similar control systems and applications to zygodactyl bird's foot. Networks & Heterogeneous Media, 2015, 10 (2) : 401-419. doi: 10.3934/nhm.2015.10.401

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]