2016, 36(8): 4271-4285. doi: 10.3934/dcds.2016.36.4271

Hyperbolic balance laws with relaxation

1. 

Division of Applied Mathematics, Brown University, Providence, RI 02912, United States

Received  May 2015 Revised  August 2015 Published  March 2016

This expository paper surveys the progress in a research program aiming at establishing the existence and long time behavior of $BV$ solutions to the Cauchy problem for hyperbolic systems of balance laws modeling relaxation phenomena.
Citation: Constantine M. Dafermos. Hyperbolic balance laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4271-4285. doi: 10.3934/dcds.2016.36.4271
References:
[1]

D. Amadori and G. Guerra, Uniqueness and continuous dependence for systems of balance laws with dissipation,, Nonlinear Anal., 49 (2002), 987. doi: 10.1016/S0362-546X(01)00721-0.

[2]

S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems,, Ann.of Math., 161 (2005), 223. doi: 10.4007/annals.2005.161.223.

[3]

S. Bianchini, B. Hanouzet and R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy,, Comm. Pure Appl. Math., 60 (2007), 1559. doi: 10.1002/cpa.20195.

[4]

A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,, Oxford Lecture Series in Mathematics and its Applications, (2000).

[5]

C. C. Christoforou, Hyperbolic systems of balance laws via vanishing viscosity,, J. Differential Equations, 221 (2006), 470. doi: 10.1016/j.jde.2005.03.010.

[6]

C. M. Dafermos, Hyperbolic systems of balance laws with weak dissipation,, J. Hyperbolic Differ. Equ., 3 (2006), 507. doi: 10.1142/S0219891606000884.

[7]

C. M. Dafermos, BV solutions for hyperbolic systems of balance laws with relaxation,, J. Differential Equations, 255 (2013), 2521. doi: 10.1016/j.jde.2013.07.002.

[8]

C. M. Dafermos, Redistribution of damping in viscoelasticity,, Comm. Partial Differential Equations, 38 (2013), 1274. doi: 10.1080/03605302.2012.755544.

[9]

C. M. Dafermos, Heat flow with shocks in media with memory,, Indiana U. Math. J., 62 (2013), 1443. doi: 10.1512/iumj.2013.62.5126.

[10]

C. M. Dafermos, Asymptotic behavior of BV solutions to the equations of nonlinear viscoelasticity,, Commun. Inf. Syst., 13 (2013), 201. doi: 10.4310/CIS.2013.v13.n2.a4.

[11]

C. M. Dafermos, BV solutions of hyperbolic balance laws with relaxation in the absence of conserved quantities,, SIAM J. Math. Analysis, 46 (2014), 4014. doi: 10.1137/14096075X.

[12]

C. M. Dafermos, Asymptotic behavior of BV solutions to hyperbolic systems of balance laws with relaxation,, J. Hyperbolic Differ. Equ., 12 (2015), 277. doi: 10.1142/S0219891615500083.

[13]

C. M. Dafermos and L. Hsiao, Hyperbolic systems of balance laws with inhomogeneity and dissipation,, Indiana Univ. Math. J., 31 (1982), 471. doi: 10.1512/iumj.1982.31.31039.

[14]

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations,, Comm. Pure Appl. Math., 18 (1965), 697. doi: 10.1002/cpa.3160180408.

[15]

P. D. Lax, Hyperbolic systems of conservation laws,, Comm. Pure Appl. Math., 10 (1957), 537. doi: 10.1002/cpa.3160100406.

[16]

T.-P. Liu, Admissible solutions of hyperbolic conservation laws,, Memoirs AMS, 30 (1981). doi: 10.1090/memo/0240.

[17]

T. Ruggeri and D. Serre, Stability of constant equilibrium state for dissipative balance laws systems with a convex entropy,, Quart. Appl. Math., 62 (2004), 163.

[18]

H. Zeng, A class of initial value problems for $2\times 2$ hyperbolic systems with relaxation,, J. Differential Equations, 251 (2011), 1254. doi: 10.1016/j.jde.2011.05.018.

show all references

References:
[1]

D. Amadori and G. Guerra, Uniqueness and continuous dependence for systems of balance laws with dissipation,, Nonlinear Anal., 49 (2002), 987. doi: 10.1016/S0362-546X(01)00721-0.

[2]

S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems,, Ann.of Math., 161 (2005), 223. doi: 10.4007/annals.2005.161.223.

[3]

S. Bianchini, B. Hanouzet and R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy,, Comm. Pure Appl. Math., 60 (2007), 1559. doi: 10.1002/cpa.20195.

[4]

A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,, Oxford Lecture Series in Mathematics and its Applications, (2000).

[5]

C. C. Christoforou, Hyperbolic systems of balance laws via vanishing viscosity,, J. Differential Equations, 221 (2006), 470. doi: 10.1016/j.jde.2005.03.010.

[6]

C. M. Dafermos, Hyperbolic systems of balance laws with weak dissipation,, J. Hyperbolic Differ. Equ., 3 (2006), 507. doi: 10.1142/S0219891606000884.

[7]

C. M. Dafermos, BV solutions for hyperbolic systems of balance laws with relaxation,, J. Differential Equations, 255 (2013), 2521. doi: 10.1016/j.jde.2013.07.002.

[8]

C. M. Dafermos, Redistribution of damping in viscoelasticity,, Comm. Partial Differential Equations, 38 (2013), 1274. doi: 10.1080/03605302.2012.755544.

[9]

C. M. Dafermos, Heat flow with shocks in media with memory,, Indiana U. Math. J., 62 (2013), 1443. doi: 10.1512/iumj.2013.62.5126.

[10]

C. M. Dafermos, Asymptotic behavior of BV solutions to the equations of nonlinear viscoelasticity,, Commun. Inf. Syst., 13 (2013), 201. doi: 10.4310/CIS.2013.v13.n2.a4.

[11]

C. M. Dafermos, BV solutions of hyperbolic balance laws with relaxation in the absence of conserved quantities,, SIAM J. Math. Analysis, 46 (2014), 4014. doi: 10.1137/14096075X.

[12]

C. M. Dafermos, Asymptotic behavior of BV solutions to hyperbolic systems of balance laws with relaxation,, J. Hyperbolic Differ. Equ., 12 (2015), 277. doi: 10.1142/S0219891615500083.

[13]

C. M. Dafermos and L. Hsiao, Hyperbolic systems of balance laws with inhomogeneity and dissipation,, Indiana Univ. Math. J., 31 (1982), 471. doi: 10.1512/iumj.1982.31.31039.

[14]

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations,, Comm. Pure Appl. Math., 18 (1965), 697. doi: 10.1002/cpa.3160180408.

[15]

P. D. Lax, Hyperbolic systems of conservation laws,, Comm. Pure Appl. Math., 10 (1957), 537. doi: 10.1002/cpa.3160100406.

[16]

T.-P. Liu, Admissible solutions of hyperbolic conservation laws,, Memoirs AMS, 30 (1981). doi: 10.1090/memo/0240.

[17]

T. Ruggeri and D. Serre, Stability of constant equilibrium state for dissipative balance laws systems with a convex entropy,, Quart. Appl. Math., 62 (2004), 163.

[18]

H. Zeng, A class of initial value problems for $2\times 2$ hyperbolic systems with relaxation,, J. Differential Equations, 251 (2011), 1254. doi: 10.1016/j.jde.2011.05.018.

[1]

Rinaldo M. Colombo, Graziano Guerra. Hyperbolic balance laws with a dissipative non local source. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1077-1090. doi: 10.3934/cpaa.2008.7.1077

[2]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure & Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[3]

Graziano Crasta, Benedetto Piccoli. Viscosity solutions and uniqueness for systems of inhomogeneous balance laws. Discrete & Continuous Dynamical Systems - A, 1997, 3 (4) : 477-502. doi: 10.3934/dcds.1997.3.477

[4]

Yanni Zeng. LP decay for general hyperbolic-parabolic systems of balance laws. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 363-396. doi: 10.3934/dcds.2018018

[5]

Donatella Donatelli, Corrado Lattanzio. On the diffusive stress relaxation for multidimensional viscoelasticity. Communications on Pure & Applied Analysis, 2009, 8 (2) : 645-654. doi: 10.3934/cpaa.2009.8.645

[6]

Caravenna Laura. Regularity estimates for continuous solutions of $\alpha$-convex balance laws. Communications on Pure & Applied Analysis, 2017, 16 (2) : 629-644. doi: 10.3934/cpaa.2017031

[7]

Alberto Bressan, Wen Shen. BV estimates for multicomponent chromatography with relaxation. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 21-38. doi: 10.3934/dcds.2000.6.21

[8]

Ali Unver, Christian Ringhofer, Dieter Armbruster. A hyperbolic relaxation model for product flow in complex production networks. Conference Publications, 2009, 2009 (Special) : 790-799. doi: 10.3934/proc.2009.2009.790

[9]

Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107

[10]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[11]

Stefano Bianchini. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 329-350. doi: 10.3934/dcds.2000.6.329

[12]

Zhi-Qiang Shao. Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonal form with large BV data. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2739-2752. doi: 10.3934/cpaa.2013.12.2739

[13]

Alfredo Lorenzi, Eugenio Sinestrari. Identifying a BV-kernel in a hyperbolic integrodifferential equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1199-1219. doi: 10.3934/dcds.2008.21.1199

[14]

J. R. L. Webb. Multiple positive solutions of some nonlinear heat flow problems. Conference Publications, 2005, 2005 (Special) : 895-903. doi: 10.3934/proc.2005.2005.895

[15]

Youcef Amirat, Kamel Hamdache. Strong solutions to the equations of flow and heat transfer in magnetic fluids with internal rotations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3289-3320. doi: 10.3934/dcds.2013.33.3289

[16]

Raphael Stuhlmeier. Effects of shear flow on KdV balance - applications to tsunami . Communications on Pure & Applied Analysis, 2012, 11 (4) : 1549-1561. doi: 10.3934/cpaa.2012.11.1549

[17]

Piotr Gwiazda, Piotr Orlinski, Agnieszka Ulikowska. Finite range method of approximation for balance laws in measure spaces. Kinetic & Related Models, 2017, 10 (3) : 669-688. doi: 10.3934/krm.2017027

[18]

Weishi Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 871-884. doi: 10.3934/dcds.2004.10.871

[19]

K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

[20]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]