2016, 36(7): 3623-3638. doi: 10.3934/dcds.2016.36.3623

Periodic shadowing of vector fields

1. 

Department of Mathematics, Hohai University, Nanjing 211100, China

2. 

School of Mathematical and Statistical Sciences, University of Texas-Rio Grande Valley, Edinburg, TX 78539

3. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

Received  March 2015 Revised  December 2015 Published  March 2016

A vector field has the periodic shadowing property if for any $\varepsilon>0$ there is $d>0$ such that, for any periodic $d$-pseudo orbit $g$ there exists a periodic orbit or a singularity in which $g$ is $\varepsilon$-shadowed. In this paper, we show that a vector field is in the $C^1$ interior of the set of vector fields satisfying the periodic shadowing property if and only if it is $\Omega$-stable. More precisely, we prove that the $C^1$ interior of the set of vector fields satisfying the orbital periodic shadowing property is a subset of the set of $\Omega$-stable vector fields.
Citation: Jifeng Chu, Zhaosheng Feng, Ming Li. Periodic shadowing of vector fields. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3623-3638. doi: 10.3934/dcds.2016.36.3623
References:
[1]

D. V. Anosov, On a class of invariant sets of smooth dynamical systems,, Proc. 5th Int. Conf. on Nonlin. Oscill., 2 (1970), 39.

[2]

C. Bonatti, M. Li and D. Yang, A robustly chain transitive attractor with singularities of different indices,, J. Inst. Math. Jussieu, 12 (2013), 449. doi: 10.1017/S1474748012000710.

[3]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,, Lecture Notes in Math., (1975).

[4]

S. Gan, M. Li and S. B. Tikhomirov, Oriented shadowing property and $\Omega$-stability for vector fields,, J. Dynam. Differential Equations, 28 (2016), 225. doi: 10.1007/s10884-014-9399-5.

[5]

S. Gan and L. Wen, Nonsingular star flows satisfy Axiom A and the nocycle condition,, Invent. Math., 164 (2006), 279. doi: 10.1007/s00222-005-0479-3.

[6]

K. Lee and K. Sakai, Structural stability of vector fields with shadowing,, J. Differential Equations, 232 (2007), 303. doi: 10.1016/j.jde.2006.08.012.

[7]

A. Morimoto, The Method of Pseudo-Orbit Tracing and Stability of Dynamical Systems,, Sem. Note, 39 (1979).

[8]

A. V. Osipov, S. Yu. Pilyugin and S. B. Tikhomirov, Periodic Shadowing and $\Omega$-stability,, Regul. Chaotic Dyn., 15 (2010), 404. doi: 10.1134/S1560354710020255.

[9]

K. J. Palmer, Shadowing in Dynamical Systems: Theory and Applications,, Kluwer, (2000). doi: 10.1007/978-1-4757-3210-8.

[10]

K. J. Palmer, S. Yu. Pilyugin and S. B. Tikhomirov, Lipschitz shadowing and structural stability of flows,, J. Differential Equations, 252 (2012), 1723. doi: 10.1016/j.jde.2011.07.026.

[11]

S. Yu. Pilyugin, Shadowing in Dynamical Systems,, Lecture Notes in Math., 1706 (1999).

[12]

S. Yu. Pilyugin, Variational shadowing,, Discrete Contin. Dyn. Syst. B, 14 (2010), 733. doi: 10.3934/dcdsb.2010.14.733.

[13]

S. Yu. Pilyugin and S. B. Tikhomirov, Vector fields with the oriented shadowing property,, J. Differential Equations, 248 (2010), 1345. doi: 10.1016/j.jde.2009.09.024.

[14]

S. Yu. Pilyugin and S. B. Tikhomirov, Lipschitz shadowing implies structural stability,, Nonlinearity, 23 (2010), 2509. doi: 10.1088/0951-7715/23/10/009.

[15]

C. Robinson, Stability theorems and hyperbolicity in dynamical systems,, Rocky Mountain J. Math., 7 (1977), 425. doi: 10.1216/RMJ-1977-7-3-425.

[16]

K. Sakai, Pseudo orbit tracing property and strong transversality of diffeomorphisms on closed manifolds,, Osaka J. Math., 31 (1994), 373.

[17]

K. Sawada, Extended $f$-orbits are approximated by orbits,, Nagoya Math. J., 79 (1980), 33.

[18]

L. Wen, A uniform $C^1$ connecting lemma,, Discrete Contin. Dyn. Syst., 8 (2002), 257. doi: 10.3934/dcds.2002.8.257.

[19]

L. Wen and Z. Xia, $C^1$ connecting lemmas,, Trans. Amer. Math. Soc., 352 (2000), 5213. doi: 10.1090/S0002-9947-00-02553-8.

[20]

S. Zhu, S. Gan and L. Wen, Indices of singularities of robustly transitive sets,, Discrete Cont. Dyn. Syst., 21 (2008), 945. doi: 10.3934/dcds.2008.21.945.

show all references

References:
[1]

D. V. Anosov, On a class of invariant sets of smooth dynamical systems,, Proc. 5th Int. Conf. on Nonlin. Oscill., 2 (1970), 39.

[2]

C. Bonatti, M. Li and D. Yang, A robustly chain transitive attractor with singularities of different indices,, J. Inst. Math. Jussieu, 12 (2013), 449. doi: 10.1017/S1474748012000710.

[3]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,, Lecture Notes in Math., (1975).

[4]

S. Gan, M. Li and S. B. Tikhomirov, Oriented shadowing property and $\Omega$-stability for vector fields,, J. Dynam. Differential Equations, 28 (2016), 225. doi: 10.1007/s10884-014-9399-5.

[5]

S. Gan and L. Wen, Nonsingular star flows satisfy Axiom A and the nocycle condition,, Invent. Math., 164 (2006), 279. doi: 10.1007/s00222-005-0479-3.

[6]

K. Lee and K. Sakai, Structural stability of vector fields with shadowing,, J. Differential Equations, 232 (2007), 303. doi: 10.1016/j.jde.2006.08.012.

[7]

A. Morimoto, The Method of Pseudo-Orbit Tracing and Stability of Dynamical Systems,, Sem. Note, 39 (1979).

[8]

A. V. Osipov, S. Yu. Pilyugin and S. B. Tikhomirov, Periodic Shadowing and $\Omega$-stability,, Regul. Chaotic Dyn., 15 (2010), 404. doi: 10.1134/S1560354710020255.

[9]

K. J. Palmer, Shadowing in Dynamical Systems: Theory and Applications,, Kluwer, (2000). doi: 10.1007/978-1-4757-3210-8.

[10]

K. J. Palmer, S. Yu. Pilyugin and S. B. Tikhomirov, Lipschitz shadowing and structural stability of flows,, J. Differential Equations, 252 (2012), 1723. doi: 10.1016/j.jde.2011.07.026.

[11]

S. Yu. Pilyugin, Shadowing in Dynamical Systems,, Lecture Notes in Math., 1706 (1999).

[12]

S. Yu. Pilyugin, Variational shadowing,, Discrete Contin. Dyn. Syst. B, 14 (2010), 733. doi: 10.3934/dcdsb.2010.14.733.

[13]

S. Yu. Pilyugin and S. B. Tikhomirov, Vector fields with the oriented shadowing property,, J. Differential Equations, 248 (2010), 1345. doi: 10.1016/j.jde.2009.09.024.

[14]

S. Yu. Pilyugin and S. B. Tikhomirov, Lipschitz shadowing implies structural stability,, Nonlinearity, 23 (2010), 2509. doi: 10.1088/0951-7715/23/10/009.

[15]

C. Robinson, Stability theorems and hyperbolicity in dynamical systems,, Rocky Mountain J. Math., 7 (1977), 425. doi: 10.1216/RMJ-1977-7-3-425.

[16]

K. Sakai, Pseudo orbit tracing property and strong transversality of diffeomorphisms on closed manifolds,, Osaka J. Math., 31 (1994), 373.

[17]

K. Sawada, Extended $f$-orbits are approximated by orbits,, Nagoya Math. J., 79 (1980), 33.

[18]

L. Wen, A uniform $C^1$ connecting lemma,, Discrete Contin. Dyn. Syst., 8 (2002), 257. doi: 10.3934/dcds.2002.8.257.

[19]

L. Wen and Z. Xia, $C^1$ connecting lemmas,, Trans. Amer. Math. Soc., 352 (2000), 5213. doi: 10.1090/S0002-9947-00-02553-8.

[20]

S. Zhu, S. Gan and L. Wen, Indices of singularities of robustly transitive sets,, Discrete Cont. Dyn. Syst., 21 (2008), 945. doi: 10.3934/dcds.2008.21.945.

[1]

Ale Jan Homburg. Heteroclinic bifurcations of $\Omega$-stable vector fields on 3-manifolds. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 559-580. doi: 10.3934/dcds.1998.4.559

[2]

Raquel Ribeiro. Hyperbolicity and types of shadowing for $C^1$ generic vector fields. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2963-2982. doi: 10.3934/dcds.2014.34.2963

[3]

Wenxiang Sun, Yun Yang. Hyperbolic periodic points for chain hyperbolic homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3911-3925. doi: 10.3934/dcds.2016.36.3911

[4]

Charles-Michel Marle. A property of conformally Hamiltonian vector fields; Application to the Kepler problem. Journal of Geometric Mechanics, 2012, 4 (2) : 181-206. doi: 10.3934/jgm.2012.4.181

[5]

Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365

[6]

Fang Zhang, Yunhua Zhou. On the limit quasi-shadowing property. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2861-2879. doi: 10.3934/dcds.2017123

[7]

Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481

[8]

Carlos Arnoldo Morales, M. J. Pacifico. Lyapunov stability of $\omega$-limit sets. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 671-674. doi: 10.3934/dcds.2002.8.671

[9]

Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 809-828. doi: 10.3934/dcds.2000.6.809

[10]

Andrew D. Barwell, Chris Good, Piotr Oprocha, Brian E. Raines. Characterizations of $\omega$-limit sets in topologically hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1819-1833. doi: 10.3934/dcds.2013.33.1819

[11]

Lidong Wang, Hui Wang, Guifeng Huang. Minimal sets and $\omega$-chaos in expansive systems with weak specification property. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1231-1238. doi: 10.3934/dcds.2015.35.1231

[12]

Shaobo Gan, Kazuhiro Sakai, Lan Wen. $C^1$ -stably weakly shadowing homoclinic classes admit dominated splittings. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 205-216. doi: 10.3934/dcds.2010.27.205

[13]

BronisŁaw Jakubczyk, Wojciech Kryński. Vector fields with distributions and invariants of ODEs. Journal of Geometric Mechanics, 2013, 5 (1) : 85-129. doi: 10.3934/jgm.2013.5.85

[14]

Rafael Potrie. Partially hyperbolic diffeomorphisms with a trapping property. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5037-5054. doi: 10.3934/dcds.2015.35.5037

[15]

Zhibo Cheng, Jingli Ren. Periodic and subharmonic solutions for duffing equation with a singularity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1557-1574. doi: 10.3934/dcds.2012.32.1557

[16]

Davor Dragičević. Admissibility, a general type of Lipschitz shadowing and structural stability. Communications on Pure & Applied Analysis, 2015, 14 (3) : 861-880. doi: 10.3934/cpaa.2015.14.861

[17]

Livio Flaminio, Miguel Paternain. Linearization of cohomology-free vector fields. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1031-1039. doi: 10.3934/dcds.2011.29.1031

[18]

Alexander Krasnosel'skii, Jean Mawhin. The index at infinity for some vector fields with oscillating nonlinearities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 165-174. doi: 10.3934/dcds.2000.6.165

[19]

Antoni Ferragut, Jaume Llibre, Adam Mahdi. Polynomial inverse integrating factors for polynomial vector fields. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 387-395. doi: 10.3934/dcds.2007.17.387

[20]

Jorge Sotomayor, Michail Zhitomirskii. On pairs of foliations defined by vector fields in the plane. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 741-749. doi: 10.3934/dcds.2000.6.741

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]