2016, 36(6): 3463-3481. doi: 10.3934/dcds.2016.36.3463

Modified Schmidt games and non-dense forward orbits of partially hyperbolic systems

1. 

School of Mathematical Sciences, Peking University, Beijing 100871, China

Received  April 2015 Revised  October 2015 Published  December 2015

Let $f: M \to M$ be a $C^{1+\theta}$-partially hyperbolic diffeomorphism. We introduce a type of modified Schmidt games which is induced by $f$ and played on any unstable manifold. Utilizing it we generalize some results of [25] as follows. Consider a set of points with non-dense forward orbit: $$E(f, y) := \{ z\in M: y\notin \overline{\{f^k(z), k \in \mathbb{N}\}}\}$$ for some $y \in M$ and $$E_{x}(f, y) := E(f, y) \cap W^u(x)$$ for any $x\in M$. We show that $E_x(f,y)$ is a winning set for such modified Schmidt games played on $W^u(x)$, which implies that $E_x(f,y)$ has Hausdorff dimension equal to $\dim W^u(x)$. Then for any nonempty open set $V \subset M$ we show that $E(f, y) \cap V$ has full Hausdorff dimension equal to $\dim M$, by using a technique of constructing measures supported on $E(f, y)$ with lower pointwise dimension approximating $\dim M$.
Citation: Weisheng Wu. Modified Schmidt games and non-dense forward orbits of partially hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3463-3481. doi: 10.3934/dcds.2016.36.3463
References:
[1]

J. An, Two dimensional badly approximable vectors and Schmidt's game,, Duke Mathematical Journal, ().

[2]

C. S. Aravinda and E. Leuzinger, Bounded geodesics in rank-1 locally symmetric spaces,, Ergodic Theory and Dynamical Systems, 15 (1995), 813. doi: 10.1017/S0143385700009640.

[3]

M. Brin and Ja. B. Pesin, Partially hyperbolic dynamical systems,, Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170.

[4]

R. Broderick, L. Fishman and D. Y. Kleinbock, Schmidt's game, fractals, and orbits of toral endomorphisms,, Ergodic Theory Dynam. Systems, 31 (2011), 1095. doi: 10.1017/S0143385710000374.

[5]

K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems,, Annals of Math., 171 (2010), 451. doi: 10.4007/annals.2010.171.451.

[6]

S. G. Dani, Divergent trajectories of flows on homogeneous spaces and Diophantine approximation,, J. reine angew. Math., 359 (1985), 55. doi: 10.1515/crll.1985.359.55.

[7]

S. G. Dani, Bounded orbits of flows on homogeneous spaces,, Commentarii Mathematici Helvetici, 61 (1986), 636. doi: 10.1007/BF02621936.

[8]

S. G. Dani, On orbits of endomorphisms of tori and the Schmidt game,, Ergodic Theory and Dynamical Systems, 8 (1988), 523. doi: 10.1017/S0143385700004673.

[9]

S. G. Dani and H. Shah, Badly approximable numbers and vectors in Cantor-like sets,, Proceedings of the American Mathematical Society, 140 (2012), 2575. doi: 10.1090/S0002-9939-2011-11105-5.

[10]

D. Dolgopyat, Bounded orbits of Anosov flows,, Duke Mathematical Journal, 87 (1997), 87. doi: 10.1215/S0012-7094-97-08704-4.

[11]

K. Falconer, Fractal Geometry: Mathematical Foundations and Applications,, Wiley, (2007). doi: 10.1002/0470013850.

[12]

J. M. Franks, Invariant sets of hyperbolic toral automorphisms,, American Journal of Mathematics, 99 (1977), 1089. doi: 10.2307/2374001.

[13]

D. Y. Kleinbock and G. A. Margulis, {Bounded orbits of nonquasiunipotent flows on homogeneous spaces,, American Mathematical Society Translations, 171 (1996), 141.

[14]

D. Y. Kleinbock and B. Weiss, Modified Schmidt games and Diophantine approximation with weights,, Advances in Mathematics, 223 (2010), 1276. doi: 10.1016/j.aim.2009.09.018.

[15]

\bysame, Modified Schmidt games and a conjecture of Margulis,, Journal of Modern Dynamics, 7 (2013), 429. doi: 10.3934/jmd.2013.7.429.

[16]

R. Mañé, Orbits of paths under hyperbolic toral automorphisms,, Proceedings of the American Mathematical Society, 73 (1979), 121. doi: 10.1090/S0002-9939-1979-0512072-3.

[17]

C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions,, Transactions of the American Mathematical Society, 300 (1987), 329. doi: 10.1090/S0002-9947-1987-0871679-3.

[18]

F. Przytycki, Construction of invariant sets for Anosov diffeomorphisms and hyperbolic attractors,, Studia Mathematica, 68 (1980), 199.

[19]

C. Pugh and M. Shub, Ergodicity of Anosov actions,, Inventiones mathematicae, 15 (1972), 1. doi: 10.1007/BF01418639.

[20]

F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1d-center bundle,, Inventiones mathematicae, 172 (2008), 353. doi: 10.1007/s00222-007-0100-z.

[21]

W. M. Schmidt, On badly approximable numbers and certain games,, Transactions of the American Mathematical Society, 123 (1966), 178. doi: 10.1090/S0002-9947-1966-0195595-4.

[22]

W. M. Schmidt, Badly approximable systems of linear forms,, Journal of Number Theory, 1 (1969), 139. doi: 10.1016/0022-314X(69)90032-8.

[23]

J. Tseng, Schmidt games and Markov partitions,, Nonlinearity, 22 (2009), 525. doi: 10.1088/0951-7715/22/3/001.

[24]

M. Urbański, The Hausdorff dimension of the set of points with nondense orbit under a hyperbolic dynamical system,, Nonlinearity, 4 (1991), 385. doi: 10.1088/0951-7715/4/2/009.

[25]

W. Wu, Schmidt games and non-dense forward orbits of certain partially hyperbolic systems,, Ergodic Theory and Dynamical Systems, (). doi: 10.1017/etds.2014.136.

show all references

References:
[1]

J. An, Two dimensional badly approximable vectors and Schmidt's game,, Duke Mathematical Journal, ().

[2]

C. S. Aravinda and E. Leuzinger, Bounded geodesics in rank-1 locally symmetric spaces,, Ergodic Theory and Dynamical Systems, 15 (1995), 813. doi: 10.1017/S0143385700009640.

[3]

M. Brin and Ja. B. Pesin, Partially hyperbolic dynamical systems,, Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170.

[4]

R. Broderick, L. Fishman and D. Y. Kleinbock, Schmidt's game, fractals, and orbits of toral endomorphisms,, Ergodic Theory Dynam. Systems, 31 (2011), 1095. doi: 10.1017/S0143385710000374.

[5]

K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems,, Annals of Math., 171 (2010), 451. doi: 10.4007/annals.2010.171.451.

[6]

S. G. Dani, Divergent trajectories of flows on homogeneous spaces and Diophantine approximation,, J. reine angew. Math., 359 (1985), 55. doi: 10.1515/crll.1985.359.55.

[7]

S. G. Dani, Bounded orbits of flows on homogeneous spaces,, Commentarii Mathematici Helvetici, 61 (1986), 636. doi: 10.1007/BF02621936.

[8]

S. G. Dani, On orbits of endomorphisms of tori and the Schmidt game,, Ergodic Theory and Dynamical Systems, 8 (1988), 523. doi: 10.1017/S0143385700004673.

[9]

S. G. Dani and H. Shah, Badly approximable numbers and vectors in Cantor-like sets,, Proceedings of the American Mathematical Society, 140 (2012), 2575. doi: 10.1090/S0002-9939-2011-11105-5.

[10]

D. Dolgopyat, Bounded orbits of Anosov flows,, Duke Mathematical Journal, 87 (1997), 87. doi: 10.1215/S0012-7094-97-08704-4.

[11]

K. Falconer, Fractal Geometry: Mathematical Foundations and Applications,, Wiley, (2007). doi: 10.1002/0470013850.

[12]

J. M. Franks, Invariant sets of hyperbolic toral automorphisms,, American Journal of Mathematics, 99 (1977), 1089. doi: 10.2307/2374001.

[13]

D. Y. Kleinbock and G. A. Margulis, {Bounded orbits of nonquasiunipotent flows on homogeneous spaces,, American Mathematical Society Translations, 171 (1996), 141.

[14]

D. Y. Kleinbock and B. Weiss, Modified Schmidt games and Diophantine approximation with weights,, Advances in Mathematics, 223 (2010), 1276. doi: 10.1016/j.aim.2009.09.018.

[15]

\bysame, Modified Schmidt games and a conjecture of Margulis,, Journal of Modern Dynamics, 7 (2013), 429. doi: 10.3934/jmd.2013.7.429.

[16]

R. Mañé, Orbits of paths under hyperbolic toral automorphisms,, Proceedings of the American Mathematical Society, 73 (1979), 121. doi: 10.1090/S0002-9939-1979-0512072-3.

[17]

C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions,, Transactions of the American Mathematical Society, 300 (1987), 329. doi: 10.1090/S0002-9947-1987-0871679-3.

[18]

F. Przytycki, Construction of invariant sets for Anosov diffeomorphisms and hyperbolic attractors,, Studia Mathematica, 68 (1980), 199.

[19]

C. Pugh and M. Shub, Ergodicity of Anosov actions,, Inventiones mathematicae, 15 (1972), 1. doi: 10.1007/BF01418639.

[20]

F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1d-center bundle,, Inventiones mathematicae, 172 (2008), 353. doi: 10.1007/s00222-007-0100-z.

[21]

W. M. Schmidt, On badly approximable numbers and certain games,, Transactions of the American Mathematical Society, 123 (1966), 178. doi: 10.1090/S0002-9947-1966-0195595-4.

[22]

W. M. Schmidt, Badly approximable systems of linear forms,, Journal of Number Theory, 1 (1969), 139. doi: 10.1016/0022-314X(69)90032-8.

[23]

J. Tseng, Schmidt games and Markov partitions,, Nonlinearity, 22 (2009), 525. doi: 10.1088/0951-7715/22/3/001.

[24]

M. Urbański, The Hausdorff dimension of the set of points with nondense orbit under a hyperbolic dynamical system,, Nonlinearity, 4 (1991), 385. doi: 10.1088/0951-7715/4/2/009.

[25]

W. Wu, Schmidt games and non-dense forward orbits of certain partially hyperbolic systems,, Ergodic Theory and Dynamical Systems, (). doi: 10.1017/etds.2014.136.

[1]

Vanderlei Horita, Marcelo Viana. Hausdorff dimension for non-hyperbolic repellers II: DA diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1125-1152. doi: 10.3934/dcds.2005.13.1125

[2]

Carlos Matheus, Jacob Palis. An estimate on the Hausdorff dimension of stable sets of non-uniformly hyperbolic horseshoes. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 431-448. doi: 10.3934/dcds.2018020

[3]

Dmitry Kleinbock, Barak Weiss. Modified Schmidt games and a conjecture of Margulis. Journal of Modern Dynamics, 2013, 7 (3) : 429-460. doi: 10.3934/jmd.2013.7.429

[4]

Paul Wright. Differentiability of Hausdorff dimension of the non-wandering set in a planar open billiard. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3993-4014. doi: 10.3934/dcds.2016.36.3993

[5]

Todd Young. Partially hyperbolic sets from a co-dimension one bifurcation. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 253-275. doi: 10.3934/dcds.1995.1.253

[6]

Yan Huang. On Hausdorff dimension of the set of non-ergodic directions of two-genus double cover of tori. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2395-2409. doi: 10.3934/dcds.2018099

[7]

Hiroki Sumi, Mariusz Urbański. Bowen parameter and Hausdorff dimension for expanding rational semigroups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2591-2606. doi: 10.3934/dcds.2012.32.2591

[8]

Shmuel Friedland, Gunter Ochs. Hausdorff dimension, strong hyperbolicity and complex dynamics. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 405-430. doi: 10.3934/dcds.1998.4.405

[9]

Sara Munday. On Hausdorff dimension and cusp excursions for Fuchsian groups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2503-2520. doi: 10.3934/dcds.2012.32.2503

[10]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[11]

Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457

[12]

Krzysztof Barański, Michał Wardal. On the Hausdorff dimension of the Sierpiński Julia sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3293-3313. doi: 10.3934/dcds.2015.35.3293

[13]

Kei Irie. Dense existence of periodic Reeb orbits and ECH spectral invariants. Journal of Modern Dynamics, 2015, 9: 357-363. doi: 10.3934/jmd.2015.9.357

[14]

Pengfei Zhang. Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1435-1447. doi: 10.3934/dcds.2012.32.1435

[15]

Rafael Potrie. Partially hyperbolic diffeomorphisms with a trapping property. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5037-5054. doi: 10.3934/dcds.2015.35.5037

[16]

Lorenzo J. Díaz, Todd Fisher. Symbolic extensions and partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1419-1441. doi: 10.3934/dcds.2011.29.1419

[17]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Journal of Modern Dynamics, 2010, 4 (2) : 271-327. doi: 10.3934/jmd.2010.4.271

[18]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Electronic Research Announcements, 2010, 17: 68-79. doi: 10.3934/era.2010.17.68

[19]

Ilie Ugarcovici. On hyperbolic measures and periodic orbits. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 505-512. doi: 10.3934/dcds.2006.16.505

[20]

Jeremias Epperlein, Vladimír Švígler. On arbitrarily long periodic orbits of evolutionary games on graphs. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 1895-1915. doi: 10.3934/dcdsb.2018187

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]