- Previous Article
- DCDS Home
- This Issue
-
Next Article
Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data
On uniformly recurrent motions of topological semigroup actions
1. | Department of Mathematics, Nanjing University, Nanjing 210093, China |
2. | Department of Mathematics, Nanjing University, Nanjing, 210093 |
$\bullet$ For any neighborhood $U$ of $x$, the return times set $\{g\in G : gx\in U\}$ is syndetic of Furstenburg in $G$.
  $\bullet$ Given any $\varepsilon>0$, there exists a finite subset $K$ of $G$ such that for each $g$ in $G$, the $\varepsilon$-neighborhood of the orbit-arc $K[gx]$ contains the entire orbit $G[x]$.
This is a generalization of a classical theorem of Birkhoff for the case where $G=\mathbb{R}$ or $\mathbb{Z}$. In addition, a counterexample is constructed to this statement, while $X$ is merely a complete but not locally compact metric space.
References:
[1] |
J. Egawa, A characterization of regularly almost periodic minimal flows,, Proc. Japan Acad. Ser. A, 71 (1995), 225.
doi: 10.3792/pjaa.71.225. |
[2] |
H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,, Princeton University Press, (1981).
|
[3] |
W. H. Gottschalk, Almost periodic points with respect to transformation semi-groups,, Annals of Math., 47 (1946), 762.
doi: 10.2307/1969233. |
[4] |
W. H. Gottschalk, A survey of minimal sets,, Ann. Inst. Fourier, 14 (1964), 53.
doi: 10.5802/aif.160. |
[5] |
W. H. Gottschalk and G. A. Hedlund, Topological Dynamics,, Amer. Math. Soc. Coll. Publ., (1955).
|
[6] |
A. Miller and J. Rosenblatt, Characterizations of regular almost periodicity in compact minimal abelian flows,, Trans. Amer. Math. Soc., 356 (2004), 4909.
doi: 10.1090/S0002-9947-04-03538-X. |
[7] |
D. Montgomery, Almost periodic transformation groups,, Trans. Amer. Math. Soc., 42 (1937), 322.
doi: 10.1090/S0002-9947-1937-1501924-0. |
[8] |
V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations,, Princeton University Press, (1960).
|
[9] |
A. Weil, L'Integration Dans Les Groupes Topologiques et Ses Applications,, Actualitiés scientifiques, (1938). |
show all references
References:
[1] |
J. Egawa, A characterization of regularly almost periodic minimal flows,, Proc. Japan Acad. Ser. A, 71 (1995), 225.
doi: 10.3792/pjaa.71.225. |
[2] |
H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,, Princeton University Press, (1981).
|
[3] |
W. H. Gottschalk, Almost periodic points with respect to transformation semi-groups,, Annals of Math., 47 (1946), 762.
doi: 10.2307/1969233. |
[4] |
W. H. Gottschalk, A survey of minimal sets,, Ann. Inst. Fourier, 14 (1964), 53.
doi: 10.5802/aif.160. |
[5] |
W. H. Gottschalk and G. A. Hedlund, Topological Dynamics,, Amer. Math. Soc. Coll. Publ., (1955).
|
[6] |
A. Miller and J. Rosenblatt, Characterizations of regular almost periodicity in compact minimal abelian flows,, Trans. Amer. Math. Soc., 356 (2004), 4909.
doi: 10.1090/S0002-9947-04-03538-X. |
[7] |
D. Montgomery, Almost periodic transformation groups,, Trans. Amer. Math. Soc., 42 (1937), 322.
doi: 10.1090/S0002-9947-1937-1501924-0. |
[8] |
V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations,, Princeton University Press, (1960).
|
[9] |
A. Weil, L'Integration Dans Les Groupes Topologiques et Ses Applications,, Actualitiés scientifiques, (1938). |
[1] |
Álvaro Castañeda, Gonzalo Robledo. Almost reducibility of linear difference systems from a spectral point of view. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1977-1988. doi: 10.3934/cpaa.2017097 |
[2] |
Richard Miles, Thomas Ward. A directional uniformity of periodic point distribution and mixing. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1181-1189. doi: 10.3934/dcds.2011.30.1181 |
[3] |
Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807 |
[4] |
Hannelore Lisei, Radu Precup, Csaba Varga. A Schechter type critical point result in annular conical domains of a Banach space and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3775-3789. doi: 10.3934/dcds.2016.36.3775 |
[5] |
Jiao Chen, Weike Wang. The point-wise estimates for the solution of damped wave equation with nonlinear convection in multi-dimensional space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 307-330. doi: 10.3934/cpaa.2014.13.307 |
[6] |
Paolo Perfetti. Fixed point theorems in the Arnol'd model about instability of the action-variables in phase-space. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 379-391. doi: 10.3934/dcds.1998.4.379 |
[7] |
G. A. Swarup. On the cut point conjecture. Electronic Research Announcements, 1996, 2: 98-100. |
[8] |
Marek Rychlik. The Equichordal Point Problem. Electronic Research Announcements, 1996, 2: 108-123. |
[9] |
Junxiang Xu. On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2593-2619. doi: 10.3934/dcds.2013.33.2593 |
[10] |
Wenhua Qiu, Jianguo Si. On small perturbation of four-dimensional quasi-periodic system with degenerate equilibrium point. Communications on Pure & Applied Analysis, 2015, 14 (2) : 421-437. doi: 10.3934/cpaa.2015.14.421 |
[11] |
Ralf Kirsch, Sergej Rjasanow. The uniformly heated inelastic Boltzmann equation in Fourier space. Kinetic & Related Models, 2010, 3 (3) : 445-456. doi: 10.3934/krm.2010.3.445 |
[12] |
Zvia Agur, L. Arakelyan, P. Daugulis, Y. Ginosar. Hopf point analysis for angiogenesis models. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 29-38. doi: 10.3934/dcdsb.2004.4.29 |
[13] |
Philip N. J. Eagle, Steven D. Galbraith, John B. Ong. Point compression for Koblitz elliptic curves. Advances in Mathematics of Communications, 2011, 5 (1) : 1-10. doi: 10.3934/amc.2011.5.1 |
[14] |
Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297 |
[15] |
Giuseppe Marino, Hong-Kun Xu. Convergence of generalized proximal point algorithms. Communications on Pure & Applied Analysis, 2004, 3 (4) : 791-808. doi: 10.3934/cpaa.2004.3.791 |
[16] |
Leong-Kwan Li, Sally Shao. Convergence analysis of the weighted state space search algorithm for recurrent neural networks. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 193-207. doi: 10.3934/naco.2014.4.193 |
[17] |
Juan Sánchez, Marta Net, José M. Vega. Amplitude equations close to a triple-(+1) bifurcation point of D4-symmetric periodic orbits in O(2)-equivariant systems. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1357-1380. doi: 10.3934/dcdsb.2006.6.1357 |
[18] |
Jianqin Zhou, Wanquan Liu, Xifeng Wang. Complete characterization of the first descent point distribution for the k-error linear complexity of 2n-periodic binary sequences. Advances in Mathematics of Communications, 2017, 11 (3) : 429-444. doi: 10.3934/amc.2017036 |
[19] |
Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703 |
[20] |
Peter Giesl, Martin Rasmussen. A note on almost periodic variational equations. Communications on Pure & Applied Analysis, 2011, 10 (3) : 983-994. doi: 10.3934/cpaa.2011.10.983 |
2016 Impact Factor: 1.099
Tools
Metrics
Other articles
by authors
[Back to Top]