• Previous Article
    Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions
  • DCDS Home
  • This Issue
  • Next Article
    Invariance properties of the Monge-Kantorovich mass transport problem
May  2016, 36(5): 2627-2652. doi: 10.3934/dcds.2016.36.2627

Heat equation with a nonlinear boundary condition and uniformly local $L^r$ spaces

1. 

Mathematical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan

Received  April 2015 Revised  August 2015 Published  October 2015

We establish the local existence and the uniqueness of solutions of the heat equation with a nonlinear boundary condition for the initial data in uniformly local $L^r$ spaces. Furthermore, we study the sharp lower estimates of the blow-up time of the solutions with the initial data $\lambda\psi$ as $\lambda\to 0$ or $\lambda\to\infty$ and the lower blow-up estimates of the solutions.
Citation: Kazuhiro Ishige, Ryuichi Sato. Heat equation with a nonlinear boundary condition and uniformly local $L^r$ spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2627-2652. doi: 10.3934/dcds.2016.36.2627
References:
[1]

R. A. Adams, Sobolev Spaces,, Pure and Applied Mathematics, (1975). Google Scholar

[2]

D. Andreucci and E. DiBenedetto, On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 18 (1991), 363. Google Scholar

[3]

D. Andreucci, New results on the Cauchy problem for parabolic systems and equations with strongly nonlinear sources,, Manuscripta Math., 77 (1992), 127. doi: 10.1007/BF02567050. Google Scholar

[4]

J. M. Arrieta, A. N. Carvalho and A. Rodríguez-Bernal, Parabolic problems with nonlinear boundary conditions and critical nonlinearities,, J. Differential Equations, 156 (1999), 376. doi: 10.1006/jdeq.1998.3612. Google Scholar

[5]

J. M. Arrieta, A. N. Carvalho and A. Rodríguez-Bernal, Attractors of parabolic problems with nonlinear boundary conditions. Uniform bounds,, Comm. Partial Differential Equations, 25 (2000), 1. doi: 10.1080/03605300008821506. Google Scholar

[6]

J. M. Arrieta and A. Rodríguez-Bernal, Non well posedness of parabolic equations with supercritical nonlinearities,, Commun. Contemp. Math., 6 (2004), 733. doi: 10.1142/S0219199704001495. Google Scholar

[7]

J. M. Arrieta, A. Rodríguez-Bernal, J. W. Cholewa and T. Dlotko, Linear parabolic equations in locally uniform spaces,, Math. Models Methods Appl. Sci., 14 (2004), 253. doi: 10.1142/S0218202504003234. Google Scholar

[8]

M. Chlebík and M. Fila, From critical exponents to blow-up rates for parabolic problems,, Rend. Mat. Appl., 19 (1999), 449. Google Scholar

[9]

M. Chlebík and M. Fila, On the blow-up rate for the heat equation with a nonlinear boundary condition,, Math. Methods Appl. Sci., 23 (2000), 1323. doi: 10.1002/1099-1476(200010)23:15<1323::AID-MMA167>3.0.CO;2-W. Google Scholar

[10]

M. Chlebík and M. Fila, Some recent results on blow-up on the boundary for the heat equation,, in Evolution Equations: Existence, (2000), 61. Google Scholar

[11]

K. Deng, M. Fila and H. A. Levine, On critical exponents for a system of heat equations coupled in the boundary conditions,, Acta Math. Univ. Comenianae, 63 (1994), 169. Google Scholar

[12]

E. DiBenedetto, Continuity of weak solutions to a general porous medium equation,, Indiana Univ. Math. J., 32 (1983), 83. doi: 10.1512/iumj.1983.32.32008. Google Scholar

[13]

E. DiBenedetto, Degenerate Parabolic Equations,, Universitext, (1993). doi: 10.1007/978-1-4612-0895-2. Google Scholar

[14]

J. Fernández Bonder and J. D. Rossi, Life span for solutions of the heat equation with a nonlinear boundary condition,, Tsukuba J. Math., 25 (2001), 215. Google Scholar

[15]

M. Fila, Boundedness of global solutions for the heat equation with nonlinear boundary conditions,, Comm. Math. Univ. Carol. 30 (1989), 30 (1989), 479. Google Scholar

[16]

M. Fila and P. Quittner, The blow-up rate for the heat equation with a nonlinear boundary condition,, Math. Methods Appl. Sci., 14 (1991), 197. doi: 10.1002/mma.1670140304. Google Scholar

[17]

J. Filo and J. Kačur, Local existence of general nonlinear parabolic systems,, Nonlinear Anal., 24 (1995), 1597. doi: 10.1016/0362-546X(94)00093-W. Google Scholar

[18]

V. A. Galaktionov and H. A. Levine, On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary,, Israel J. Math., 94 (1996), 125. doi: 10.1007/BF02762700. Google Scholar

[19]

M.-H. Giga, Y. Giga and J. Saal, Nonlinear Partial Differential Equations, Asymptotic Behavior of Solutions and Self-Similar Solutions,, Progr. Nonlinear Differential Equations Appl., (2010). doi: 10.1007/978-0-8176-4651-6. Google Scholar

[20]

J.-S. Guo and B. Hu, Blowup rate for heat equation in Lipschitz domains with nonlinear heat source terms on the boundary,, J. Math. Anal. Appl., 269 (2002), 28. doi: 10.1016/S0022-247X(02)00002-1. Google Scholar

[21]

J. Harada, Single point blow-up solutions to the heat equation with nonlinear boundary conditions,, Differ. Equ. Appl., 5 (2013), 271. doi: 10.7153/dea-05-17. Google Scholar

[22]

B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition,, Differential Integral Equations, 7 (1994), 301. Google Scholar

[23]

B. Hu, Nondegeneracy and single-point-blowup for solution of the heat equation with a nonlinear boundary condition,, J. Math. Sci. Univ. Tokyo, 1 (1994), 251. Google Scholar

[24]

B. Hu, Remarks on the blowup estimate for solution of the heat equation with a nonlinear boundary condition,, Differential Integral Equations, 9 (1996), 891. Google Scholar

[25]

B. Hu and H.-M. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition,, Trans. Amer. Math. Soc., 346 (1994), 117. doi: 10.1090/S0002-9947-1994-1270664-3. Google Scholar

[26]

K. Ishige, On the existence of solutions of the Cauchy problem for a doubly nonlinear parabolic equation,, SIAM J. Math. Anal., 27 (1996), 1235. doi: 10.1137/S0036141094270370. Google Scholar

[27]

K. Ishige and T. Kawakami, Global solutions of the heat equation with a nonlinear boundary condition,, Calc. Var. Partial Differential Equations, 39 (2010), 429. doi: 10.1007/s00526-010-0316-4. Google Scholar

[28]

T. Kawakami, Global existence of solutions for the heat equation with a nonlinear boundary condition,, J. Math. Anal. Appl., 368 (2010), 320. doi: 10.1016/j.jmaa.2010.02.007. Google Scholar

[29]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type,, American Mathematical Society Translations, (1968). Google Scholar

[30]

T.-Y. Lee and W.-M. Ni, Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem,, Trans. Amer. Math. Soc., 333 (1992), 365. doi: 10.1090/S0002-9947-1992-1057781-6. Google Scholar

[31]

Y. Maekawa and Y. Terasawa, The Navier-Stokes equations with initial data in uniformly local $L^p$ spaces,, Differential Integral Equations, 19 (2006), 369. Google Scholar

[32]

M. Nakao, Global solutions for some nonlinear parabolic equations with nonmonotonic perturbations,, Nonlinear Anal., 10 (1986), 299. doi: 10.1016/0362-546X(86)90005-2. Google Scholar

[33]

P. Quittner, Liouville theorems for scaling invariant superlinear parabolic problems with gradient structure,, Math. Ann., (2015), 1. doi: 10.1007/s00208-015-1219-7. Google Scholar

[34]

P. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States,, Birkhäuser Advanced Texts, (2007). Google Scholar

[35]

P. Quittner and P. Souplet, Blow-up rate of solutions of parabolic problems with nonlinear boundary conditions,, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 671. doi: 10.3934/dcdss.2012.5.671. Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces,, Pure and Applied Mathematics, (1975). Google Scholar

[2]

D. Andreucci and E. DiBenedetto, On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 18 (1991), 363. Google Scholar

[3]

D. Andreucci, New results on the Cauchy problem for parabolic systems and equations with strongly nonlinear sources,, Manuscripta Math., 77 (1992), 127. doi: 10.1007/BF02567050. Google Scholar

[4]

J. M. Arrieta, A. N. Carvalho and A. Rodríguez-Bernal, Parabolic problems with nonlinear boundary conditions and critical nonlinearities,, J. Differential Equations, 156 (1999), 376. doi: 10.1006/jdeq.1998.3612. Google Scholar

[5]

J. M. Arrieta, A. N. Carvalho and A. Rodríguez-Bernal, Attractors of parabolic problems with nonlinear boundary conditions. Uniform bounds,, Comm. Partial Differential Equations, 25 (2000), 1. doi: 10.1080/03605300008821506. Google Scholar

[6]

J. M. Arrieta and A. Rodríguez-Bernal, Non well posedness of parabolic equations with supercritical nonlinearities,, Commun. Contemp. Math., 6 (2004), 733. doi: 10.1142/S0219199704001495. Google Scholar

[7]

J. M. Arrieta, A. Rodríguez-Bernal, J. W. Cholewa and T. Dlotko, Linear parabolic equations in locally uniform spaces,, Math. Models Methods Appl. Sci., 14 (2004), 253. doi: 10.1142/S0218202504003234. Google Scholar

[8]

M. Chlebík and M. Fila, From critical exponents to blow-up rates for parabolic problems,, Rend. Mat. Appl., 19 (1999), 449. Google Scholar

[9]

M. Chlebík and M. Fila, On the blow-up rate for the heat equation with a nonlinear boundary condition,, Math. Methods Appl. Sci., 23 (2000), 1323. doi: 10.1002/1099-1476(200010)23:15<1323::AID-MMA167>3.0.CO;2-W. Google Scholar

[10]

M. Chlebík and M. Fila, Some recent results on blow-up on the boundary for the heat equation,, in Evolution Equations: Existence, (2000), 61. Google Scholar

[11]

K. Deng, M. Fila and H. A. Levine, On critical exponents for a system of heat equations coupled in the boundary conditions,, Acta Math. Univ. Comenianae, 63 (1994), 169. Google Scholar

[12]

E. DiBenedetto, Continuity of weak solutions to a general porous medium equation,, Indiana Univ. Math. J., 32 (1983), 83. doi: 10.1512/iumj.1983.32.32008. Google Scholar

[13]

E. DiBenedetto, Degenerate Parabolic Equations,, Universitext, (1993). doi: 10.1007/978-1-4612-0895-2. Google Scholar

[14]

J. Fernández Bonder and J. D. Rossi, Life span for solutions of the heat equation with a nonlinear boundary condition,, Tsukuba J. Math., 25 (2001), 215. Google Scholar

[15]

M. Fila, Boundedness of global solutions for the heat equation with nonlinear boundary conditions,, Comm. Math. Univ. Carol. 30 (1989), 30 (1989), 479. Google Scholar

[16]

M. Fila and P. Quittner, The blow-up rate for the heat equation with a nonlinear boundary condition,, Math. Methods Appl. Sci., 14 (1991), 197. doi: 10.1002/mma.1670140304. Google Scholar

[17]

J. Filo and J. Kačur, Local existence of general nonlinear parabolic systems,, Nonlinear Anal., 24 (1995), 1597. doi: 10.1016/0362-546X(94)00093-W. Google Scholar

[18]

V. A. Galaktionov and H. A. Levine, On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary,, Israel J. Math., 94 (1996), 125. doi: 10.1007/BF02762700. Google Scholar

[19]

M.-H. Giga, Y. Giga and J. Saal, Nonlinear Partial Differential Equations, Asymptotic Behavior of Solutions and Self-Similar Solutions,, Progr. Nonlinear Differential Equations Appl., (2010). doi: 10.1007/978-0-8176-4651-6. Google Scholar

[20]

J.-S. Guo and B. Hu, Blowup rate for heat equation in Lipschitz domains with nonlinear heat source terms on the boundary,, J. Math. Anal. Appl., 269 (2002), 28. doi: 10.1016/S0022-247X(02)00002-1. Google Scholar

[21]

J. Harada, Single point blow-up solutions to the heat equation with nonlinear boundary conditions,, Differ. Equ. Appl., 5 (2013), 271. doi: 10.7153/dea-05-17. Google Scholar

[22]

B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition,, Differential Integral Equations, 7 (1994), 301. Google Scholar

[23]

B. Hu, Nondegeneracy and single-point-blowup for solution of the heat equation with a nonlinear boundary condition,, J. Math. Sci. Univ. Tokyo, 1 (1994), 251. Google Scholar

[24]

B. Hu, Remarks on the blowup estimate for solution of the heat equation with a nonlinear boundary condition,, Differential Integral Equations, 9 (1996), 891. Google Scholar

[25]

B. Hu and H.-M. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition,, Trans. Amer. Math. Soc., 346 (1994), 117. doi: 10.1090/S0002-9947-1994-1270664-3. Google Scholar

[26]

K. Ishige, On the existence of solutions of the Cauchy problem for a doubly nonlinear parabolic equation,, SIAM J. Math. Anal., 27 (1996), 1235. doi: 10.1137/S0036141094270370. Google Scholar

[27]

K. Ishige and T. Kawakami, Global solutions of the heat equation with a nonlinear boundary condition,, Calc. Var. Partial Differential Equations, 39 (2010), 429. doi: 10.1007/s00526-010-0316-4. Google Scholar

[28]

T. Kawakami, Global existence of solutions for the heat equation with a nonlinear boundary condition,, J. Math. Anal. Appl., 368 (2010), 320. doi: 10.1016/j.jmaa.2010.02.007. Google Scholar

[29]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type,, American Mathematical Society Translations, (1968). Google Scholar

[30]

T.-Y. Lee and W.-M. Ni, Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem,, Trans. Amer. Math. Soc., 333 (1992), 365. doi: 10.1090/S0002-9947-1992-1057781-6. Google Scholar

[31]

Y. Maekawa and Y. Terasawa, The Navier-Stokes equations with initial data in uniformly local $L^p$ spaces,, Differential Integral Equations, 19 (2006), 369. Google Scholar

[32]

M. Nakao, Global solutions for some nonlinear parabolic equations with nonmonotonic perturbations,, Nonlinear Anal., 10 (1986), 299. doi: 10.1016/0362-546X(86)90005-2. Google Scholar

[33]

P. Quittner, Liouville theorems for scaling invariant superlinear parabolic problems with gradient structure,, Math. Ann., (2015), 1. doi: 10.1007/s00208-015-1219-7. Google Scholar

[34]

P. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States,, Birkhäuser Advanced Texts, (2007). Google Scholar

[35]

P. Quittner and P. Souplet, Blow-up rate of solutions of parabolic problems with nonlinear boundary conditions,, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 671. doi: 10.3934/dcdss.2012.5.671. Google Scholar

[1]

Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147

[2]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[3]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[4]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[5]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[6]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[7]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[8]

Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617

[9]

Monica Marras, Stella Vernier Piro. Bounds for blow-up time in nonlinear parabolic systems. Conference Publications, 2011, 2011 (Special) : 1025-1031. doi: 10.3934/proc.2011.2011.1025

[10]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[11]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[12]

Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure & Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183

[13]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[14]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[15]

José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43

[16]

Van Tien Nguyen. On the blow-up results for a class of strongly perturbed semilinear heat equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3585-3626. doi: 10.3934/dcds.2015.35.3585

[17]

Lan Qiao, Sining Zheng. Non-simultaneous blow-up for heat equations with positive-negative sources and coupled boundary flux. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1113-1129. doi: 10.3934/cpaa.2007.6.1113

[18]

Frank Merle, Hatem Zaag. O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 435-450. doi: 10.3934/dcds.2002.8.435

[19]

Jens Lorenz, Wilberclay G. Melo, Natã Firmino Rocha. The Magneto–Hydrodynamic equations: Local theory and blow-up of solutions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3819-3841. doi: 10.3934/dcdsb.2018332

[20]

Yohei Fujishima. On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 449-475. doi: 10.3934/cpaa.2018025

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]