May  2016, 36(5): 2497-2520. doi: 10.3934/dcds.2016.36.2497

Cyclicity of a class of polynomial nilpotent center singularities

1. 

Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69. 25001. Lleida.

2. 

Mathematics Department, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States

Received  July 2014 Revised  July 2015 Published  October 2015

In this work we extend techniques based on computational algebra for bounding the cyclicity of nondegenerate centers to nilpotent centers in a natural class of polynomial systems, those of the form $\dot x = y + P_{2m + 1}(x,y)$, $\dot y = Q_{2m + 1}(x,y)$, where $P_{2m+1}$ and $Q_{2m+1}$ are homogeneous polynomials of degree $2m + 1$ in $x$ and $y$. We use the method to obtain an upper bound (which is sharp in this case) on the cyclicity of all centers in the cubic family and all centers in a broad subclass in the quintic family.
Citation: Isaac A. García, Douglas S. Shafer. Cyclicity of a class of polynomial nilpotent center singularities. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2497-2520. doi: 10.3934/dcds.2016.36.2497
References:
[1]

A. Algaba, C. García and M. Reyes, The center problem for a family of systems of differential equations having a nilpotent singular point,, J. Math. Anal. Appl., 340 (2008), 32. doi: 10.1016/j.jmaa.2007.07.043. Google Scholar

[2]

A. Algaba, C. García and M. Reyes, Local bifurcation of limit cycles and integrability of a class of nilpotent systems of differential equations,, Appl. Math. Comput., 215 (2009), 314. doi: 10.1016/j.amc.2009.04.077. Google Scholar

[3]

V. V. Amel'kin, N. A. Lukashevich and A. P. Sadovskii, Nonlinear Oscillations in Second-Order Systems,, Minsk, (1982). Google Scholar

[4]

A. Andreev, Solution of the problem of the center and the focus in one case (Russian),, Akad. Nauk SSSR. Prikl. Mat. Meh., 17 (1953), 333. Google Scholar

[5]

A. Andreev, Investigation on the behaviour of the integral curves of a system of two differential equations in the neighborhood of a singular point,, Translations Amer. Math. Soc., 8 (1958), 187. Google Scholar

[6]

A. F. Andreev, A. P. Sadovskiĭ and V. A. Tsikalyuk, The center-focus problem for a system with homogeneous nonlinearities in the case of zero eigenvalues of the linear part,, Differ. Equ., 39 (2003), 155. doi: 10.1023/A:1025192613518. Google Scholar

[7]

J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Local analytic integrability for nilpotent centers,, Ergodic Theory Dynam. Systems, 23 (2003), 417. doi: 10.1017/S014338570200127X. Google Scholar

[8]

C. Christopher, Estimating limit cycles bifurcations from centers,, in Trends in Mathematics, (2005), 23. doi: 10.1007/3-7643-7429-2_2. Google Scholar

[9]

D. Eisenbud, C. Huneke and W. Vasconcelos, Direct methods for primary decomposition,, Invent. Math., 110 (1992), 207. doi: 10.1007/BF01231331. Google Scholar

[10]

B. Ferčec, V. Levandovskyy, V. G. Romanovski and D. S. Shafer, Bifurcation of critical periods of polynomial systems,, J. Differential Equations, 259 (2015), 3825. doi: 10.1016/j.jde.2015.05.004. Google Scholar

[11]

V. Levandovskyy, A. Logar and V. G. Romanovski, The cyclicity of a cubic system,, Open Syst. Inf. Dyn., 16 (2009), 429. doi: 10.1142/S1230161209000323. Google Scholar

[12]

A. M. Lyapunov, Stability of Motion,, Mathematics in Science and Engineering, (1966). Google Scholar

[13]

J. F. Mattei and R. Moussu, Holonomie et intégrales premières,, Annales Scientifiques de l'École Normale Supérieure, 13 (1980), 469. Google Scholar

[14]

V. G. Romanovski, Cyclicity of the equilibrium state of the center or focus type of a system (Russian),, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. vyp., 4 (1986), 82. Google Scholar

[15]

V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach,, Birkhäuser Boston, (2009). doi: 10.1007/978-0-8176-4727-8. Google Scholar

[16]

A. P. Sadovskii, The problem of center and focus (Russian),, Differents. Uravn., 4 (1968), 2002. Google Scholar

show all references

References:
[1]

A. Algaba, C. García and M. Reyes, The center problem for a family of systems of differential equations having a nilpotent singular point,, J. Math. Anal. Appl., 340 (2008), 32. doi: 10.1016/j.jmaa.2007.07.043. Google Scholar

[2]

A. Algaba, C. García and M. Reyes, Local bifurcation of limit cycles and integrability of a class of nilpotent systems of differential equations,, Appl. Math. Comput., 215 (2009), 314. doi: 10.1016/j.amc.2009.04.077. Google Scholar

[3]

V. V. Amel'kin, N. A. Lukashevich and A. P. Sadovskii, Nonlinear Oscillations in Second-Order Systems,, Minsk, (1982). Google Scholar

[4]

A. Andreev, Solution of the problem of the center and the focus in one case (Russian),, Akad. Nauk SSSR. Prikl. Mat. Meh., 17 (1953), 333. Google Scholar

[5]

A. Andreev, Investigation on the behaviour of the integral curves of a system of two differential equations in the neighborhood of a singular point,, Translations Amer. Math. Soc., 8 (1958), 187. Google Scholar

[6]

A. F. Andreev, A. P. Sadovskiĭ and V. A. Tsikalyuk, The center-focus problem for a system with homogeneous nonlinearities in the case of zero eigenvalues of the linear part,, Differ. Equ., 39 (2003), 155. doi: 10.1023/A:1025192613518. Google Scholar

[7]

J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Local analytic integrability for nilpotent centers,, Ergodic Theory Dynam. Systems, 23 (2003), 417. doi: 10.1017/S014338570200127X. Google Scholar

[8]

C. Christopher, Estimating limit cycles bifurcations from centers,, in Trends in Mathematics, (2005), 23. doi: 10.1007/3-7643-7429-2_2. Google Scholar

[9]

D. Eisenbud, C. Huneke and W. Vasconcelos, Direct methods for primary decomposition,, Invent. Math., 110 (1992), 207. doi: 10.1007/BF01231331. Google Scholar

[10]

B. Ferčec, V. Levandovskyy, V. G. Romanovski and D. S. Shafer, Bifurcation of critical periods of polynomial systems,, J. Differential Equations, 259 (2015), 3825. doi: 10.1016/j.jde.2015.05.004. Google Scholar

[11]

V. Levandovskyy, A. Logar and V. G. Romanovski, The cyclicity of a cubic system,, Open Syst. Inf. Dyn., 16 (2009), 429. doi: 10.1142/S1230161209000323. Google Scholar

[12]

A. M. Lyapunov, Stability of Motion,, Mathematics in Science and Engineering, (1966). Google Scholar

[13]

J. F. Mattei and R. Moussu, Holonomie et intégrales premières,, Annales Scientifiques de l'École Normale Supérieure, 13 (1980), 469. Google Scholar

[14]

V. G. Romanovski, Cyclicity of the equilibrium state of the center or focus type of a system (Russian),, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. vyp., 4 (1986), 82. Google Scholar

[15]

V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach,, Birkhäuser Boston, (2009). doi: 10.1007/978-0-8176-4727-8. Google Scholar

[16]

A. P. Sadovskii, The problem of center and focus (Russian),, Differents. Uravn., 4 (1968), 2002. Google Scholar

[1]

Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439

[2]

Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447

[3]

Jaume Llibre, Dana Schlomiuk. On the limit cycles bifurcating from an ellipse of a quadratic center. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1091-1102. doi: 10.3934/dcds.2015.35.1091

[4]

Magdalena Caubergh, Freddy Dumortier, Robert Roussarie. Alien limit cycles in rigid unfoldings of a Hamiltonian 2-saddle cycle. Communications on Pure & Applied Analysis, 2007, 6 (1) : 1-21. doi: 10.3934/cpaa.2007.6.1

[5]

Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123

[6]

Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047

[7]

Stijn Luca, Freddy Dumortier, Magdalena Caubergh, Robert Roussarie. Detecting alien limit cycles near a Hamiltonian 2-saddle cycle. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1081-1108. doi: 10.3934/dcds.2009.25.1081

[8]

Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893

[9]

Fabio Scalco Dias, Luis Fernando Mello. The center--focus problem and small amplitude limit cycles in rigid systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1627-1637. doi: 10.3934/dcds.2012.32.1627

[10]

Iliya D. Iliev, Chengzhi Li, Jiang Yu. Bifurcations of limit cycles in a reversible quadratic system with a center, a saddle and two nodes. Communications on Pure & Applied Analysis, 2010, 9 (3) : 583-610. doi: 10.3934/cpaa.2010.9.583

[11]

Jaume Llibre, Yilei Tang. Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1769-1784. doi: 10.3934/dcdsb.2018236

[12]

Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803

[13]

Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846-853. doi: 10.3934/proc.2005.2005.846

[14]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[15]

Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129

[16]

Percy Fernández-Sánchez, Jorge Mozo-Fernández, Hernán Neciosup. Dicritical nilpotent holomorphic foliations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3223-3237. doi: 10.3934/dcds.2018140

[17]

Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121

[18]

Na Li, Maoan Han, Valery G. Romanovski. Cyclicity of some Liénard Systems. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2127-2150. doi: 10.3934/cpaa.2015.14.2127

[19]

Sergio R. López-Permouth, Benigno R. Parra-Avila, Steve Szabo. Dual generalizations of the concept of cyclicity of codes. Advances in Mathematics of Communications, 2009, 3 (3) : 227-234. doi: 10.3934/amc.2009.3.227

[20]

Mark Pollicott. Ergodicity of stable manifolds for nilpotent extensions of Anosov flows. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 599-604. doi: 10.3934/dcds.2002.8.599

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]