2016, 36(5): 2473-2496. doi: 10.3934/dcds.2016.36.2473

Multidimensional stability of planar traveling waves for the scalar nonlocal Allen-Cahn equation

1. 

CAMS - Ecole des Hautes Etudes en Sciences Sociales, 190-198 avenue de France, 75013 Paris, France

Received  November 2014 Revised  September 2015 Published  October 2015

We prove the multidimensional stability of planar traveling waves for scalar nonlocal Allen-Cahn equations using semigroup estimates. We show that if the traveling wave is spectrally stable in one space dimension, then it is stable in $n$-space dimension, $n\geq 2$, with perturbations of the traveling wave decaying like $t^{-(n-1)/4}$ as $t\rightarrow +\infty$ in $H^k(\mathbb{R}^n)$ for $k\geq \left[\frac{n+1}{2}\right]$.
Citation: Grégory Faye. Multidimensional stability of planar traveling waves for the scalar nonlocal Allen-Cahn equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2473-2496. doi: 10.3934/dcds.2016.36.2473
References:
[1]

P. W. Bates and F. Chen, Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation,, J. Math. Anal. Appl., 273 (2002), 45. doi: 10.1016/S0022-247X(02)00205-6.

[2]

P. W. Bates and F. Chen, Spectral analysis of traveling waves for nonlocal evolution equations,, SIAM J. Math. Anal., 38 (2006), 116. doi: 10.1137/S0036141004443968.

[3]

P. W. Bates, P. C. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transitions,, Arch. Rational Mech. Anal., 138 (1997), 105. doi: 10.1007/s002050050037.

[4]

E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations,, J. Math. Pures Appl., 86 (2006), 271. doi: 10.1016/j.matpur.2006.04.005.

[5]

F. Chen, Uniform stability if multidimensional travelling waves for the nonlocal Allen-Cahn equation,, Electronic Journal of Differential Equations, 10 (2003), 109.

[6]

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations,, Advences in Differential Equations, 2 (1997), 125.

[7]

J. Coville, Equation de Réaction Diffusion Non-locale,, Thèse de doctorat del'université Pierre et Marie Curie, (2003).

[8]

A. De Masi, T. Gobron and E. Presutti, Traveling fronts in non-local evolution equations,, Arch. Rat. Mech. Anal, 132 (1995), 143. doi: 10.1007/BF00380506.

[9]

G. B. Ermentrout and J. B. McLeod, Existence and uniqueness of travelling waves for a neural network,, Proc. Roy. Soc. Edin., 123 (1993), 461. doi: 10.1017/S030821050002583X.

[10]

T. Gallay and A. Scheel, Diffusive stability of oscillations in reaction-diffusion systems,, Trans. Amer. Math. Soc., 363 (2011), 2571. doi: 10.1090/S0002-9947-2010-05148-7.

[11]

A. Hoffman, H. J. Hupkes and E. S. van Vleck, Multi-dimensional stability of waves travelling through rectangular lattices in rational directions,, Trans. Amer. Math. Soc., 367 (2015), 8757. doi: 10.1090/S0002-9947-2015-06392-2.

[12]

M. A. Johnson and K. Zumbrun, Nonlinear stability of periodic traveling wave solutions of systems of viscous conservation laws in the generic case,, J. Differential Equations, 249 (2010), 1213. doi: 10.1016/j.jde.2010.04.015.

[13]

T. Kapitula, Multidimensional stability of planar traveling waves,, Trans. Amer. Math. Soc., 349 (1997), 257. doi: 10.1090/S0002-9947-97-01668-1.

[14]

C. D. Levermore and J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation, II,, Comm. in Par. Diff. Equ., 17 (1992), 1901. doi: 10.1080/03605309208820908.

[15]

H. Matano, M. Nara and M. Taniguchi, Stability of planar waves in the Allen-Cahn equation,, Comm. in Par. Diff. Equ., 34 (2009), 976. doi: 10.1080/03605300902963500.

[16]

J. R. Miller and H. Zeng, Multidimensional stability of planar traveling waves for an integrodifference model,, Discrete and Continuous Dynamical Systems B, 18 (2013), 741.

[17]

M. Oh and K. Zumbrun, Stability and asymptotic behavior of traveling-wave solutions of viscous conservation laws in several dimensions,, Arch. Ration. Mech. Anal., 196 (2010), 1. doi: 10.1007/s00205-009-0229-6.

[18]

J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation, I,, Comm. in Par. Diff. Equ., 17 (1992), 1889. doi: 10.1080/03605309208820907.

show all references

References:
[1]

P. W. Bates and F. Chen, Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation,, J. Math. Anal. Appl., 273 (2002), 45. doi: 10.1016/S0022-247X(02)00205-6.

[2]

P. W. Bates and F. Chen, Spectral analysis of traveling waves for nonlocal evolution equations,, SIAM J. Math. Anal., 38 (2006), 116. doi: 10.1137/S0036141004443968.

[3]

P. W. Bates, P. C. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transitions,, Arch. Rational Mech. Anal., 138 (1997), 105. doi: 10.1007/s002050050037.

[4]

E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations,, J. Math. Pures Appl., 86 (2006), 271. doi: 10.1016/j.matpur.2006.04.005.

[5]

F. Chen, Uniform stability if multidimensional travelling waves for the nonlocal Allen-Cahn equation,, Electronic Journal of Differential Equations, 10 (2003), 109.

[6]

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations,, Advences in Differential Equations, 2 (1997), 125.

[7]

J. Coville, Equation de Réaction Diffusion Non-locale,, Thèse de doctorat del'université Pierre et Marie Curie, (2003).

[8]

A. De Masi, T. Gobron and E. Presutti, Traveling fronts in non-local evolution equations,, Arch. Rat. Mech. Anal, 132 (1995), 143. doi: 10.1007/BF00380506.

[9]

G. B. Ermentrout and J. B. McLeod, Existence and uniqueness of travelling waves for a neural network,, Proc. Roy. Soc. Edin., 123 (1993), 461. doi: 10.1017/S030821050002583X.

[10]

T. Gallay and A. Scheel, Diffusive stability of oscillations in reaction-diffusion systems,, Trans. Amer. Math. Soc., 363 (2011), 2571. doi: 10.1090/S0002-9947-2010-05148-7.

[11]

A. Hoffman, H. J. Hupkes and E. S. van Vleck, Multi-dimensional stability of waves travelling through rectangular lattices in rational directions,, Trans. Amer. Math. Soc., 367 (2015), 8757. doi: 10.1090/S0002-9947-2015-06392-2.

[12]

M. A. Johnson and K. Zumbrun, Nonlinear stability of periodic traveling wave solutions of systems of viscous conservation laws in the generic case,, J. Differential Equations, 249 (2010), 1213. doi: 10.1016/j.jde.2010.04.015.

[13]

T. Kapitula, Multidimensional stability of planar traveling waves,, Trans. Amer. Math. Soc., 349 (1997), 257. doi: 10.1090/S0002-9947-97-01668-1.

[14]

C. D. Levermore and J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation, II,, Comm. in Par. Diff. Equ., 17 (1992), 1901. doi: 10.1080/03605309208820908.

[15]

H. Matano, M. Nara and M. Taniguchi, Stability of planar waves in the Allen-Cahn equation,, Comm. in Par. Diff. Equ., 34 (2009), 976. doi: 10.1080/03605300902963500.

[16]

J. R. Miller and H. Zeng, Multidimensional stability of planar traveling waves for an integrodifference model,, Discrete and Continuous Dynamical Systems B, 18 (2013), 741.

[17]

M. Oh and K. Zumbrun, Stability and asymptotic behavior of traveling-wave solutions of viscous conservation laws in several dimensions,, Arch. Ration. Mech. Anal., 196 (2010), 1. doi: 10.1007/s00205-009-0229-6.

[18]

J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation, I,, Comm. in Par. Diff. Equ., 17 (1992), 1889. doi: 10.1080/03605309208820907.

[1]

Jonathan E. Rubin. A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 925-940. doi: 10.3934/dcds.2004.10.925

[2]

Anna Geyer, Ronald Quirchmayr. Traveling wave solutions of a highly nonlinear shallow water equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1567-1604. doi: 10.3934/dcds.2018065

[3]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[4]

Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681

[5]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[6]

Shujuan Lü, Chunbiao Gan, Baohua Wang, Linning Qian, Meisheng Li. Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 507-527. doi: 10.3934/dcdsb.2011.16.507

[7]

Jibin Li, Yi Zhang. On the traveling wave solutions for a nonlinear diffusion-convection equation: Dynamical system approach. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1119-1138. doi: 10.3934/dcdsb.2010.14.1119

[8]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[9]

Wan-Tong Li, Guo Lin, Cong Ma, Fei-Ying Yang. Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 467-484. doi: 10.3934/dcdsb.2014.19.467

[10]

Fengxin Chen. Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 659-673. doi: 10.3934/dcds.2009.24.659

[11]

Hongmei Cheng, Rong Yuan. Existence and asymptotic stability of traveling fronts for nonlocal monostable evolution equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 3007-3022. doi: 10.3934/dcdsb.2017160

[12]

Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993

[13]

Tai-Chia Lin. Vortices for the nonlinear wave equation . Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 391-398. doi: 10.3934/dcds.1999.5.391

[14]

Albert Erkip, Abba I. Ramadan. Existence of traveling waves for a class of nonlocal nonlinear equations with bell shaped kernels. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2125-2132. doi: 10.3934/cpaa.2017105

[15]

Rui Huang, Ming Mei, Yong Wang. Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3621-3649. doi: 10.3934/dcds.2012.32.3621

[16]

Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735

[17]

Q-Heung Choi, Tacksun Jung. A nonlinear wave equation with jumping nonlinearity. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 797-802. doi: 10.3934/dcds.2000.6.797

[18]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[19]

Jorge A. Esquivel-Avila. Qualitative analysis of a nonlinear wave equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 787-804. doi: 10.3934/dcds.2004.10.787

[20]

Hongqiu Chen, Jerry L. Bona. Periodic traveling--wave solutions of nonlinear dispersive evolution equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11/12) : 4841-4873. doi: 10.3934/dcds.2013.33.4841

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]