2016, 36(4): 1983-2025. doi: 10.3934/dcds.2016.36.1983

A combinatorial proof of the Kontsevich-Zorich-Boissy classification of Rauzy classes

1. 

Fine Hall - Washington Road, Princeton, NJ 08544-1000, United States

Received  November 2014 Revised  July 2015 Published  September 2015

Rauzy Classes and Extended Rauzy Classes are equivalence classes of permutations that arise when studying Interval Exchange Transformations. In 2003, Kontsevich and Zorich classified Extended Rauzy Classes by using data from Translation Surfaces, which are associated to IET's thanks to the Zippered Rectangle Construction of Veech from 1982. In 2009, Boissy finalized the classification of Rauzy Classes also using information from Translation Surfaces. We present in this paper specialized moves in (Extended) Rauzy Classes that allow us to prove the sufficiency and necessity in the previous classification theorems. These results provide a complete, and purely combinatorial, proof of these known results. We end with some general statements about our constructed move.
Citation: Jon Fickenscher. A combinatorial proof of the Kontsevich-Zorich-Boissy classification of Rauzy classes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1983-2025. doi: 10.3934/dcds.2016.36.1983
References:
[1]

A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of the Zorich-Kontsevich conjecture,, Acta Math., 198 (2007), 1. doi: 10.1007/s11511-007-0012-1.

[2]

C. Boissy, Classification of Rauzy classes in the moduli space of quadratic differentials,, Discrete and Continuous Dynam. Systems - A, 32 (2012), 3433. doi: 10.3934/dcds.2012.32.3433.

[3]

C. Boissy, Labeled rauzy classes and framed translation surfaces,, Annales de L'Institut Fourier, 63 (2013), 547. doi: 10.5802/aif.2769.

[4]

C. Boissy, A combinatorial move on the set of jenkins-strebel differentials,, preprint, ().

[5]

C. Boissy and E. Lanneau, Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials,, Ergodic Theory Dynam. Systems, 29 (2009), 767. doi: 10.1017/S0143385708080565.

[6]

D. Chen and M. Möller, Quadratic differentials in low genus: Exceptional and non-varying,, Annales scientifiques de l'École normale supérieure, 47 (2014), 309.

[7]

V. Delecroix, Cardinality of Rauzy classes,, Annales de l'institute Fourier, 63 (2013), 1651. doi: 10.5802/aif.2811.

[8]

J. Fickenscher, Self-inverses in Rauzy Classes,, Ph.D thesis, (2011).

[9]

J. Fickenscher, Labeled and non-labeled extended Rauzy classes,, preprint, ().

[10]

J. Fickenscher, Self-inverses, Lagrangian permutations and minimal interval exchange transformations with many ergodic measures,, Comm. in Contemporary Mathematics, 16 (2014). doi: 10.1142/s0219199713500193.

[11]

M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities,, Invent. Math., 153 (2003), 631. doi: 10.1007/s00222-003-0303-x.

[12]

E. Lanneau, Connected components of the strata of the moduli spaces of quadratic differentials,, Annales scientifiques de l'École normale supérieure, 41 (2008), 1.

[13]

G. Rauzy, Échanges d'intervalles et transformations induites,, Acta Arith., 34 (1979), 315.

[14]

W. A. Veech, Gauss measures for transformations on the space of interval exchange maps,, Ann. of Math. (2), 115 (1982), 201. doi: 10.2307/1971391.

[15]

W. A. Veech, Moduli spaces of quadratic differentials,, J. Analyse Math., 55 (1990), 117. doi: 10.1007/BF02789200.

[16]

M. Viana, Ergodic theory of interval exchange maps,, Rev. Mat. Complut., 19 (2006), 7. doi: 10.5209/rev_rema.2006.v19.n1.16621.

[17]

A. Zorich, Explicit Jenkins-Strebel representatives of all strata of abelian and quadratic differentials., J. Mod. Dyn., 2 (2008), 139. doi: 10.3934/jmd.2008.2.139.

show all references

References:
[1]

A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of the Zorich-Kontsevich conjecture,, Acta Math., 198 (2007), 1. doi: 10.1007/s11511-007-0012-1.

[2]

C. Boissy, Classification of Rauzy classes in the moduli space of quadratic differentials,, Discrete and Continuous Dynam. Systems - A, 32 (2012), 3433. doi: 10.3934/dcds.2012.32.3433.

[3]

C. Boissy, Labeled rauzy classes and framed translation surfaces,, Annales de L'Institut Fourier, 63 (2013), 547. doi: 10.5802/aif.2769.

[4]

C. Boissy, A combinatorial move on the set of jenkins-strebel differentials,, preprint, ().

[5]

C. Boissy and E. Lanneau, Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials,, Ergodic Theory Dynam. Systems, 29 (2009), 767. doi: 10.1017/S0143385708080565.

[6]

D. Chen and M. Möller, Quadratic differentials in low genus: Exceptional and non-varying,, Annales scientifiques de l'École normale supérieure, 47 (2014), 309.

[7]

V. Delecroix, Cardinality of Rauzy classes,, Annales de l'institute Fourier, 63 (2013), 1651. doi: 10.5802/aif.2811.

[8]

J. Fickenscher, Self-inverses in Rauzy Classes,, Ph.D thesis, (2011).

[9]

J. Fickenscher, Labeled and non-labeled extended Rauzy classes,, preprint, ().

[10]

J. Fickenscher, Self-inverses, Lagrangian permutations and minimal interval exchange transformations with many ergodic measures,, Comm. in Contemporary Mathematics, 16 (2014). doi: 10.1142/s0219199713500193.

[11]

M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities,, Invent. Math., 153 (2003), 631. doi: 10.1007/s00222-003-0303-x.

[12]

E. Lanneau, Connected components of the strata of the moduli spaces of quadratic differentials,, Annales scientifiques de l'École normale supérieure, 41 (2008), 1.

[13]

G. Rauzy, Échanges d'intervalles et transformations induites,, Acta Arith., 34 (1979), 315.

[14]

W. A. Veech, Gauss measures for transformations on the space of interval exchange maps,, Ann. of Math. (2), 115 (1982), 201. doi: 10.2307/1971391.

[15]

W. A. Veech, Moduli spaces of quadratic differentials,, J. Analyse Math., 55 (1990), 117. doi: 10.1007/BF02789200.

[16]

M. Viana, Ergodic theory of interval exchange maps,, Rev. Mat. Complut., 19 (2006), 7. doi: 10.5209/rev_rema.2006.v19.n1.16621.

[17]

A. Zorich, Explicit Jenkins-Strebel representatives of all strata of abelian and quadratic differentials., J. Mod. Dyn., 2 (2008), 139. doi: 10.3934/jmd.2008.2.139.

[1]

Giovanni Forni, Carlos Matheus. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. Journal of Modern Dynamics, 2014, 8 (3/4) : 271-436. doi: 10.3934/jmd.2014.8.271

[2]

Kariane Calta, John Smillie. Algebraically periodic translation surfaces. Journal of Modern Dynamics, 2008, 2 (2) : 209-248. doi: 10.3934/jmd.2008.2.209

[3]

Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219-248. doi: 10.3934/jmd.2017010

[4]

Christopher F. Novak. Discontinuity-growth of interval-exchange maps. Journal of Modern Dynamics, 2009, 3 (3) : 379-405. doi: 10.3934/jmd.2009.3.379

[5]

Luca Marchese. The Khinchin Theorem for interval-exchange transformations. Journal of Modern Dynamics, 2011, 5 (1) : 123-183. doi: 10.3934/jmd.2011.5.123

[6]

Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457

[7]

Pascal Hubert, Gabriela Schmithüsen. Infinite translation surfaces with infinitely generated Veech groups. Journal of Modern Dynamics, 2010, 4 (4) : 715-732. doi: 10.3934/jmd.2010.4.715

[8]

Denis Volk. Almost every interval translation map of three intervals is finite type. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2307-2314. doi: 10.3934/dcds.2014.34.2307

[9]

Jacek Brzykcy, Krzysztof Frączek. Disjointness of interval exchange transformations from systems of probabilistic origin. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 53-73. doi: 10.3934/dcds.2010.27.53

[10]

Corinna Ulcigrai. Weak mixing for logarithmic flows over interval exchange transformations. Journal of Modern Dynamics, 2009, 3 (1) : 35-49. doi: 10.3934/jmd.2009.3.35

[11]

Jon Chaika, Howard Masur. There exists an interval exchange with a non-ergodic generic measure. Journal of Modern Dynamics, 2015, 9: 289-304. doi: 10.3934/jmd.2015.9.289

[12]

Jon Chaika, David Damanik, Helge Krüger. Schrödinger operators defined by interval-exchange transformations. Journal of Modern Dynamics, 2009, 3 (2) : 253-270. doi: 10.3934/jmd.2009.3.253

[13]

David Ralston, Serge Troubetzkoy. Ergodic infinite group extensions of geodesic flows on translation surfaces. Journal of Modern Dynamics, 2012, 6 (4) : 477-497. doi: 10.3934/jmd.2012.6.477

[14]

Alexander I. Bufetov. Hölder cocycles and ergodic integrals for translation flows on flat surfaces. Electronic Research Announcements, 2010, 17: 34-42. doi: 10.3934/era.2010.17.34

[15]

Eugene Gutkin. Insecure configurations in lattice translation surfaces, with applications to polygonal billiards. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 367-382. doi: 10.3934/dcds.2006.16.367

[16]

Giovanni Forni. On the Brin Prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations . Journal of Modern Dynamics, 2012, 6 (2) : 139-182. doi: 10.3934/jmd.2012.6.139

[17]

Jean-Francois Bertazzon. Symbolic approach and induction in the Heisenberg group. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1209-1229. doi: 10.3934/dcds.2012.32.1209

[18]

José A. Conejero, Alfredo Peris. Chaotic translation semigroups. Conference Publications, 2007, 2007 (Special) : 269-276. doi: 10.3934/proc.2007.2007.269

[19]

Lyndsey Clark. The $\beta$-transformation with a hole. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1249-1269. doi: 10.3934/dcds.2016.36.1249

[20]

Shigeki Akiyama, Edmund Harriss. Pentagonal domain exchange. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4375-4400. doi: 10.3934/dcds.2013.33.4375

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]