2015, 35(2): 757-770. doi: 10.3934/dcds.2015.35.757

An ergodic theory approach to chaos

1. 

Institute of Mathematics, Polish Academy of Sciences, Bankowa 14, 40-007 Katowice

Received  February 2013 Revised  October 2013 Published  September 2014

This paper is devoted to the ergodic-theoretical approach to chaos, which is based on the existence of invariant mixing measures supported on the whole space. As an example of application of the general theory we prove that there exists an invariant mixing measure with respect to the differentiation operator on the space of entire functions. From this theorem it follows the existence of universal entire functions and other chaotic properties of this transformation.
Citation: Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757
References:
[1]

J. Auslander and J. A. Yorke, Interval maps, factors of maps and chaos,, Tôhoku Math. J. II. Ser., 32 (1980), 177. doi: 10.2748/tmj/1178229634.

[2]

J. Banasiak and M. Moszyński, A generalization of Desch-Schappacher-Webb criteria for chaos,, Discr. Contin. Dyn. Syst., 12 (2005), 959. doi: 10.3934/dcds.2005.12.959.

[3]

J. Bass, Stationary functions and their applications to turbulence,, J. Math. Anal. Appl., 47 (1974), 354. doi: 10.1016/0022-247X(74)90026-2.

[4]

F. Bayart and S. Grivaux, Frequently hypercyclic operators,, Trans. Amer. Math. Soc., 358 (2006), 5083. doi: 10.1090/S0002-9947-06-04019-0.

[5]

F. Bayart and É. Matheron, Mixing operators and small subsets of the circle,, preprint, (). doi: 10.1515/crelle-2014-0002.

[6]

G. D. Birkhoff, Démonstration d'un théorème élémentaire sur les fonctions entières,, C.R. Acad. Sci. Paris, 189 (1929), 473.

[7]

C. Blair and L. Rubel, A universal entire function,, Amer. Math. Monthly, 90 (1983), 331. doi: 10.2307/2975786.

[8]

O. Blasco, A. Bonilla and K.-G. Grosse-Erdmann, Rate of growth of frequently hypercyclic functions,, Proc. Edinb. Math. Soc., 53 (2010), 39. doi: 10.1017/S0013091508000564.

[9]

L. Bernal-González and A. Bonilla, Universality of holomorphic functions bounded on closed sets,, J. Math. Anal. Appl., 315 (2006), 302. doi: 10.1016/j.jmaa.2005.06.010.

[10]

N. N. Bogoluboff and N. M. Kriloff, La théorie générale de la measure dans son application à l'étude des systèmes dynamiques de la méchanique non-linéare,, Ann. Math., 38 (1937), 65. doi: 10.2307/1968511.

[11]

P. Brunovský and J. Komornik, Ergodicity and exactness of the shift on $C[0,\infty]$ and the semiflow of a first order partial differential equation,, J. Math. Anal. Appl., 104 (1984), 235. doi: 10.1016/0022-247X(84)90045-3.

[12]

S. A. Chobanyan, V. I. Tarieladze and N. N. Vakhania, Probability Distributions on Banach Spaces,, Kluwer Academic Publ., (1987). doi: 10.1007/978-94-009-3873-1.

[13]

I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory,, Grundlehren der Mathematischen Wissenschaften, (1982). doi: 10.1007/978-1-4615-6927-5.

[14]

R. deLaubenfels and H. Emamirad, Chaos for functions of discrete and continuous weighted shift operators,, Ergod. Th. Dynam. Sys., 21 (2001), 1411. doi: 10.1017/S0143385701001675.

[15]

W. Desch, W. Schappacher and G. F. Webb, Hypercyclic and chaotic semigroups of linear operators,, Ergodic Theory Dynamical Systems, 17 (1997), 793. doi: 10.1017/S0143385797084976.

[16]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems,, 2nd edition, (1989).

[17]

S. M. Duyos-Ruis, Universal functions of the structure of the space of entire functions,, Soviet Math. Dokl., 30 (1984), 713.

[18]

S. El Mourchid, G. Metafune, A. Rhandi and J. Voigt, On the chaotic behaviour of size structured cell populations,, J. Math. Anal. Appl., 339 (2008), 918. doi: 10.1016/j.jmaa.2007.07.034.

[19]

C. Foiaş, Statistical study of Navier-Stokes equations I, II,, Rend. Sem. Mat. Univ. Padova, 48 (1972), 219.

[20]

R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions,, Proc. Amer. Math. Soc., 100 (1987), 281. doi: 10.1090/S0002-9939-1987-0884467-4.

[21]

G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds,, J. Funct. Anal., 98 (1991), 229. doi: 10.1016/0022-1236(91)90078-J.

[22]

K. G. Grosse-Ederman, On the universal functions of G. R. MacLane,, Complex Variables Theory Appl., 15 (1990), 193. doi: 10.1080/17476939008814450.

[23]

H. M. Hilden and L. J. Wallen, Some cyclic and non-cyclic vectors of certain operators,, Indiana Univ. Math. J., 23 (1974), 557.

[24]

E. Hopf, Statistical hydromechanics and functional calculus,, J. Rational Mech. Anal., 1 (1952), 87.

[25]

K. E. Howard, A size structured model of cell dwarfism,, Discr. Contin. Dyn. Syst., 1 (2001), 471. doi: 10.3934/dcdsb.2001.1.471.

[26]

U. Krengel, Ergodic Theorems,, de Gruyter Studies in Mathematics, (1985). doi: 10.1515/9783110844641.

[27]

D. Landers and L. Roggie, An ergodic theorem for Fréchet-valued random variables,, Proc. Amer. Math. Soc., 72 (1978), 49.

[28]

A. Lasota, Invariant measures and a linear model of turbulence,, Rend. Sem. Mat. Univ. Padova, 61 (1979), 40.

[29]

A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics,, Springer Applied Mathematical Sciences, (1994). doi: 10.1007/978-1-4612-4286-4.

[30]

A. Lasota and J. Yorke, On the existence of invariant measures for transformations with strictly turbulent trajectories,, Bull. Polish Acad. Sci. Math., 25 (1977), 233.

[31]

W. Luh, On universal functions,, Colloq. Math. Soc., 19 (1976), 503.

[32]

G. R. MacLane, Sequences of derivatives and normal families,, J. Analyse Math., 2 (1952), 72. doi: 10.1007/BF02786968.

[33]

H. Méndez-Lango, Is the process of finding $f'$ chaotic?,, Rev. Integr. Temas Mat., 22 (2004), 37.

[34]

M. Murillo-Arcila and A. Peris, Strong mixing measures for linear operators and frequent hypercyclicity,, J. Math. Anal. Appl., 398 (2013), 462. doi: 10.1016/j.jmaa.2012.08.050.

[35]

J. Myjak and R. Rudnicki, Stability versus chaos for a partial differential equation,, Chaos Solitons and Fractals, 14 (2002), 607. doi: 10.1016/S0960-0779(01)00190-4.

[36]

M. Pollicott and M. Yuri, Dynamical Systems and Ergodic Theory,, London Mathematical Society Student Texts, 40 (1998).

[37]

A. Rochlin, Exact endomorphisms of Lebesque spaces,, Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499.

[38]

S. Rolewicz, On orbits of elements,, Studia Math., 32 (1969), 17.

[39]

R. Rudnicki, Invariant measures for the flow of a first-order partial differential equation,, Ergodic Theory Dynamical Systems, 8 (1985), 437. doi: 10.1017/S0143385700003059.

[40]

________, Ergodic properties of hyperbolic systems of partial differential equations,, Bull. Polish Acad. Sci. Math., 33 (1985), 595.

[41]

________, Ergodic measures on topological spaces,, Univ. Iagell. Ac. Math., 26 (1987), 231.

[42]

________, An abstract Wiener measure invariant under a partial differential equation,, Bull. Polish Acad. Sci. Math., 35 (1987), 289.

[43]

________, Strong ergodic properties of a first-order partial differential equation,, J. Math. Anal. Appl., 133 (1988), 14. doi: 10.1016/0022-247X(88)90361-7.

[44]

________, Gaussian measure-preserving linear transformations,, Univ. Iagell. Ac. Math., 30 (1993), 105.

[45]

________, Chaos for some infinite-dimensional dynamical systems,, Math. Meth. Appl. Sci., 27 (2004), 723. doi: 10.1002/mma.498.

[46]

________, Chaoticity of the blood cell production system,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 19 (2009), 1. doi: 10.1063/1.3258364.

[47]

________, Chaoticity and invariant measures for a cell population model,, J. Math. Anal. Appl., 393 (2012), 151. doi: 10.1016/j.jmaa.2012.03.055.

[48]

S. Wiggins, Chaotic Transport in Dynamical Systems,, Interdisciplinary Applied Mathematics, (1992). doi: 10.1007/978-1-4757-3896-4.

show all references

References:
[1]

J. Auslander and J. A. Yorke, Interval maps, factors of maps and chaos,, Tôhoku Math. J. II. Ser., 32 (1980), 177. doi: 10.2748/tmj/1178229634.

[2]

J. Banasiak and M. Moszyński, A generalization of Desch-Schappacher-Webb criteria for chaos,, Discr. Contin. Dyn. Syst., 12 (2005), 959. doi: 10.3934/dcds.2005.12.959.

[3]

J. Bass, Stationary functions and their applications to turbulence,, J. Math. Anal. Appl., 47 (1974), 354. doi: 10.1016/0022-247X(74)90026-2.

[4]

F. Bayart and S. Grivaux, Frequently hypercyclic operators,, Trans. Amer. Math. Soc., 358 (2006), 5083. doi: 10.1090/S0002-9947-06-04019-0.

[5]

F. Bayart and É. Matheron, Mixing operators and small subsets of the circle,, preprint, (). doi: 10.1515/crelle-2014-0002.

[6]

G. D. Birkhoff, Démonstration d'un théorème élémentaire sur les fonctions entières,, C.R. Acad. Sci. Paris, 189 (1929), 473.

[7]

C. Blair and L. Rubel, A universal entire function,, Amer. Math. Monthly, 90 (1983), 331. doi: 10.2307/2975786.

[8]

O. Blasco, A. Bonilla and K.-G. Grosse-Erdmann, Rate of growth of frequently hypercyclic functions,, Proc. Edinb. Math. Soc., 53 (2010), 39. doi: 10.1017/S0013091508000564.

[9]

L. Bernal-González and A. Bonilla, Universality of holomorphic functions bounded on closed sets,, J. Math. Anal. Appl., 315 (2006), 302. doi: 10.1016/j.jmaa.2005.06.010.

[10]

N. N. Bogoluboff and N. M. Kriloff, La théorie générale de la measure dans son application à l'étude des systèmes dynamiques de la méchanique non-linéare,, Ann. Math., 38 (1937), 65. doi: 10.2307/1968511.

[11]

P. Brunovský and J. Komornik, Ergodicity and exactness of the shift on $C[0,\infty]$ and the semiflow of a first order partial differential equation,, J. Math. Anal. Appl., 104 (1984), 235. doi: 10.1016/0022-247X(84)90045-3.

[12]

S. A. Chobanyan, V. I. Tarieladze and N. N. Vakhania, Probability Distributions on Banach Spaces,, Kluwer Academic Publ., (1987). doi: 10.1007/978-94-009-3873-1.

[13]

I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory,, Grundlehren der Mathematischen Wissenschaften, (1982). doi: 10.1007/978-1-4615-6927-5.

[14]

R. deLaubenfels and H. Emamirad, Chaos for functions of discrete and continuous weighted shift operators,, Ergod. Th. Dynam. Sys., 21 (2001), 1411. doi: 10.1017/S0143385701001675.

[15]

W. Desch, W. Schappacher and G. F. Webb, Hypercyclic and chaotic semigroups of linear operators,, Ergodic Theory Dynamical Systems, 17 (1997), 793. doi: 10.1017/S0143385797084976.

[16]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems,, 2nd edition, (1989).

[17]

S. M. Duyos-Ruis, Universal functions of the structure of the space of entire functions,, Soviet Math. Dokl., 30 (1984), 713.

[18]

S. El Mourchid, G. Metafune, A. Rhandi and J. Voigt, On the chaotic behaviour of size structured cell populations,, J. Math. Anal. Appl., 339 (2008), 918. doi: 10.1016/j.jmaa.2007.07.034.

[19]

C. Foiaş, Statistical study of Navier-Stokes equations I, II,, Rend. Sem. Mat. Univ. Padova, 48 (1972), 219.

[20]

R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions,, Proc. Amer. Math. Soc., 100 (1987), 281. doi: 10.1090/S0002-9939-1987-0884467-4.

[21]

G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds,, J. Funct. Anal., 98 (1991), 229. doi: 10.1016/0022-1236(91)90078-J.

[22]

K. G. Grosse-Ederman, On the universal functions of G. R. MacLane,, Complex Variables Theory Appl., 15 (1990), 193. doi: 10.1080/17476939008814450.

[23]

H. M. Hilden and L. J. Wallen, Some cyclic and non-cyclic vectors of certain operators,, Indiana Univ. Math. J., 23 (1974), 557.

[24]

E. Hopf, Statistical hydromechanics and functional calculus,, J. Rational Mech. Anal., 1 (1952), 87.

[25]

K. E. Howard, A size structured model of cell dwarfism,, Discr. Contin. Dyn. Syst., 1 (2001), 471. doi: 10.3934/dcdsb.2001.1.471.

[26]

U. Krengel, Ergodic Theorems,, de Gruyter Studies in Mathematics, (1985). doi: 10.1515/9783110844641.

[27]

D. Landers and L. Roggie, An ergodic theorem for Fréchet-valued random variables,, Proc. Amer. Math. Soc., 72 (1978), 49.

[28]

A. Lasota, Invariant measures and a linear model of turbulence,, Rend. Sem. Mat. Univ. Padova, 61 (1979), 40.

[29]

A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics,, Springer Applied Mathematical Sciences, (1994). doi: 10.1007/978-1-4612-4286-4.

[30]

A. Lasota and J. Yorke, On the existence of invariant measures for transformations with strictly turbulent trajectories,, Bull. Polish Acad. Sci. Math., 25 (1977), 233.

[31]

W. Luh, On universal functions,, Colloq. Math. Soc., 19 (1976), 503.

[32]

G. R. MacLane, Sequences of derivatives and normal families,, J. Analyse Math., 2 (1952), 72. doi: 10.1007/BF02786968.

[33]

H. Méndez-Lango, Is the process of finding $f'$ chaotic?,, Rev. Integr. Temas Mat., 22 (2004), 37.

[34]

M. Murillo-Arcila and A. Peris, Strong mixing measures for linear operators and frequent hypercyclicity,, J. Math. Anal. Appl., 398 (2013), 462. doi: 10.1016/j.jmaa.2012.08.050.

[35]

J. Myjak and R. Rudnicki, Stability versus chaos for a partial differential equation,, Chaos Solitons and Fractals, 14 (2002), 607. doi: 10.1016/S0960-0779(01)00190-4.

[36]

M. Pollicott and M. Yuri, Dynamical Systems and Ergodic Theory,, London Mathematical Society Student Texts, 40 (1998).

[37]

A. Rochlin, Exact endomorphisms of Lebesque spaces,, Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499.

[38]

S. Rolewicz, On orbits of elements,, Studia Math., 32 (1969), 17.

[39]

R. Rudnicki, Invariant measures for the flow of a first-order partial differential equation,, Ergodic Theory Dynamical Systems, 8 (1985), 437. doi: 10.1017/S0143385700003059.

[40]

________, Ergodic properties of hyperbolic systems of partial differential equations,, Bull. Polish Acad. Sci. Math., 33 (1985), 595.

[41]

________, Ergodic measures on topological spaces,, Univ. Iagell. Ac. Math., 26 (1987), 231.

[42]

________, An abstract Wiener measure invariant under a partial differential equation,, Bull. Polish Acad. Sci. Math., 35 (1987), 289.

[43]

________, Strong ergodic properties of a first-order partial differential equation,, J. Math. Anal. Appl., 133 (1988), 14. doi: 10.1016/0022-247X(88)90361-7.

[44]

________, Gaussian measure-preserving linear transformations,, Univ. Iagell. Ac. Math., 30 (1993), 105.

[45]

________, Chaos for some infinite-dimensional dynamical systems,, Math. Meth. Appl. Sci., 27 (2004), 723. doi: 10.1002/mma.498.

[46]

________, Chaoticity of the blood cell production system,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 19 (2009), 1. doi: 10.1063/1.3258364.

[47]

________, Chaoticity and invariant measures for a cell population model,, J. Math. Anal. Appl., 393 (2012), 151. doi: 10.1016/j.jmaa.2012.03.055.

[48]

S. Wiggins, Chaotic Transport in Dynamical Systems,, Interdisciplinary Applied Mathematics, (1992). doi: 10.1007/978-1-4757-3896-4.

[1]

S. Eigen, A. B. Hajian, V. S. Prasad. Universal skyscraper templates for infinite measure preserving transformations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 343-360. doi: 10.3934/dcds.2006.16.343

[2]

Jianzhong Wang. Wavelet approach to numerical differentiation of noisy functions. Communications on Pure & Applied Analysis, 2007, 6 (3) : 873-897. doi: 10.3934/cpaa.2007.6.873

[3]

Lidong Wang, Xiang Wang, Fengchun Lei, Heng Liu. Mixing invariant extremal distributional chaos. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6533-6538. doi: 10.3934/dcds.2016082

[4]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[5]

Jonathan C. Mattingly, Etienne Pardoux. Invariant measure selection by noise. An example. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4223-4257. doi: 10.3934/dcds.2014.34.4223

[6]

Agnieszka Badeńska. Measure rigidity for some transcendental meromorphic functions. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2375-2402. doi: 10.3934/dcds.2012.32.2375

[7]

Rafael De La Llave, R. Obaya. Regularity of the composition operator in spaces of Hölder functions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 157-184. doi: 10.3934/dcds.1999.5.157

[8]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[9]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[10]

Harald Fripertinger. The number of invariant subspaces under a linear operator on finite vector spaces. Advances in Mathematics of Communications, 2011, 5 (2) : 407-416. doi: 10.3934/amc.2011.5.407

[11]

Yury Arlinskiĭ, Eduard Tsekanovskiĭ. Constant J-unitary factor and operator-valued transfer functions. Conference Publications, 2003, 2003 (Special) : 48-56. doi: 10.3934/proc.2003.2003.48

[12]

Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101

[13]

Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207

[14]

Jawad Al-Khal, Henk Bruin, Michael Jakobson. New examples of S-unimodal maps with a sigma-finite absolutely continuous invariant measure. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 35-61. doi: 10.3934/dcds.2008.22.35

[15]

Sangtae Jeong, Chunlan Li. Measure-preservation criteria for a certain class of 1-lipschitz functions on Zp in mahler's expansion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3787-3804. doi: 10.3934/dcds.2017160

[16]

Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447

[17]

Tom Maertens, Joris Walraevens, Herwig Bruneel. Controlling delay differentiation with priority jumps: Analytical study. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 657-673. doi: 10.3934/naco.2011.1.657

[18]

Ferenc A. Bartha, Hans Z. Munthe-Kaas. Computing of B-series by automatic differentiation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 903-914. doi: 10.3934/dcds.2014.34.903

[19]

Thierry Cazenave, Flávio Dickstein, Fred B. Weissler. Universal solutions of the heat equation on $\mathbb R^N$. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1105-1132. doi: 10.3934/dcds.2003.9.1105

[20]

Nusret Balci, Ciprian Foias, M. S Jolly, Ricardo Rosa. On universal relations in 2-D turbulence. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1327-1351. doi: 10.3934/dcds.2010.27.1327

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]