2015, 35(1): 555-582. doi: 10.3934/dcds.2015.35.555

Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space

1. 

College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China

2. 

Department of Mathematics, Zhejiang University, Hangzhou 310027

3. 

Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081

Received  November 2013 Revised  June 2014 Published  August 2014

In this paper, we are concerned with a model arising from electro-hydrodynamics, which is a coupled system of the Navier-Stokes equations and the Poisson-Nernst-Planck equations through charge transport and external forcing terms. The local well-posedness and global well-posedness with small initial data to the 3-D Cauchy problem of this system are established in the critical Besov space $\dot{B}^{-1+\frac{3}{p}}_{p,1}(\mathbb{R}^{3})\times(\dot{B}^{-2+\frac{3}{q}}_{q,1}(\mathbb{R}^{3}))^{2}$ with suitable choices of $p, q$. Especially, we prove that there exist two positive constants $c_{0}, C_{0}$ depending on the coefficients of system except $\mu$ such that if \begin{equation*} \big(\|u_{0}^{h}\|_{\dot{B}^{-1+\frac{3}{p}}_{p,1}}+(\mu+1)\|(v_{0},w_{0})\|_{\dot{B}^{-2+\frac{3}{q}}_{q,1}} \big) \exp\Big\{\frac{C_{0}}{\mu^{2}}(\|u_{0}^{3}\|_{\dot{B}^{-1+\frac{3}{p}}_{p,1}}^{2}+1)\Big\}\leq c_{0}\mu, \end{equation*} then the above local solution can be extended to the global one. This result implies the global well-posedness of this system with large initial vertical velocity component.
Citation: Jihong Zhao, Ting Zhang, Qiao Liu. Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 555-582. doi: 10.3934/dcds.2015.35.555
References:
[1]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der mathematischen Wissenschaften, (2011). doi: 10.1007/978-3-642-16830-7.

[2]

P. B. Balbuena and Y. Wang, Lithium-ion Batteries, Solid-electrolyte Interphase,, Imperial College Press, (2004). doi: 10.1142/p291.

[3]

J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires,, Ann. Sci. école Norm. Sup., 14 (1981), 209.

[4]

M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations,, Rev. Mat. Iberoam., 13 (1997), 515. doi: 10.4171/RMI/229.

[5]

M. Cannone, Y. Meyer and F. Planchon, Solutions Auto-similaires des ÉQuations de Navier-Stokes in $\mathbbR^3$,, Exposé n. VIII, (1994).

[6]

J.-Y. Chemin, Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel,, J. Anal. Math., 77 (1999), 27. doi: 10.1007/BF02791256.

[7]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes,, J. Differential Equations, 121 (1995), 314. doi: 10.1006/jdeq.1995.1131.

[8]

J.-Y. Chemin and P. Zhang, On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations,, Commun. Math. Phys., 272 (2007), 529. doi: 10.1007/s00220-007-0236-0.

[9]

R. Danchin, Local theory in critical spaces for compressible viscous and heat-conducting gases,, Comm. Partial Differential Equations, 26 (2001), 1183. doi: 10.1081/PDE-100106132.

[10]

R. Danchin, Fourier Analysis Methods for PDE's,, , (2005).

[11]

C. Deng, J. Zhao and S. Cui, Well-posedness for the Navier-Stokes-Nernst-Planck-Poisson system in Triebel-Lizorkin space and Besov space with negative indices,, J. Math. Anal. Appl., 377 (2011), 392. doi: 10.1016/j.jmaa.2010.11.011.

[12]

E. T. Enikov and B. J. Nelson, Electrotransport and deformation model of ion exchange membrane based actuators,, Smart Structures and Materials, 3978 (2000), 129. doi: 10.1117/12.387771.

[13]

E. T. Enikov and G. S. Seo, Analysis of water and proton fluxes in ion-exchange polymer-metal composite (IPMC) actuators subjected to large external potentials,, Sensors and Actuators, 122 (2005), 264. doi: 10.1016/j.sna.2005.02.042.

[14]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Arch. Rational Mech. Anal., 16 (1964), 269. doi: 10.1007/BF00276188.

[15]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system,, J. Differential Equations, 62 (1986), 186. doi: 10.1016/0022-0396(86)90096-3.

[16]

J. Huang, M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system with rough density,, Progress in Nonlinear Differential Equations and Their Applications, 84 (2013), 159. doi: 10.1007/978-1-4614-6348-1_9.

[17]

J. W. Jerome, Analytical approaches to charge transport in a moving medium,, Tran. Theo. Stat. Phys., 31 (2002), 333. doi: 10.1081/TT-120015505.

[18]

J. W. Jerome, The steady boundary value problem for charged incompressible fluids: PNP/Navier-Stokes systems,, Nonlinear Anal., 74 (2011), 7486. doi: 10.1016/j.na.2011.08.003.

[19]

J. W. Jerome and R. Sacco, Global weak solutions for an incompressible charged fluid with multi-scale couplings: Initial-boundary-value problem,, Nonlinear Anal., 71 (2009). doi: 10.1016/j.na.2009.05.047.

[20]

T. Kato, Strong $L^p$ solutions of the Navier-Stokes equations in $\mathbbR^m$ with applications to weak solutions,, Math. Z., 187 (1984), 471. doi: 10.1007/BF01174182.

[21]

T. Kato and G. Ponce, Well-posedness of the Euler and Navier-Stokes equations in the Lebesgue spaces $L_p^s(\mathbbR^2)$,, Rev. Mat. Iberoam., 2 (1986), 73. doi: 10.4171/RMI/26.

[22]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, Adv. Math., 157 (2001), 22. doi: 10.1006/aima.2000.1937.

[23]

P.-G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem,, Research Notes in Mathematics, (2002). doi: 10.1201/9781420035674.

[24]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193. doi: 10.1007/BF02547354.

[25]

M. Longaretti, B. Chini, J. W. Jerome and R. Sacco, Electrochemical modeling and characterization of voltage operated channels in nano-bio-electronics,, Sensor Letters, 6 (2008), 49. doi: 10.1166/sl.2008.010.

[26]

M. Longaretti, B. Chini, J. W. Jerome and R. Sacco, Computational modeling and simulation of complex systems in bio-electronics,, J. Computational Electronics, 7 (2008), 10.

[27]

M. Longaretti, G. Marino, B. Chini, J. W. Jerome and R. Sacco, Computational models in nano-bio-electronics: Simulation of ionic transport in voltage operated channels,, J. Nanoscience and Nanotechnology, 8 (2008), 3686.

[28]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces,, Commun. Math. Phys., 307 (2011), 713. doi: 10.1007/s00220-011-1350-6.

[29]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system,, J. Funct. Anal., 262 (2012), 3556. doi: 10.1016/j.jfa.2012.01.022.

[30]

F. Planchon, Sur un inégalité de type Poincaré,, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 21. doi: 10.1016/S0764-4442(00)88138-0.

[31]

I. Rubinstein, Electro-Diffusion of Ions,, SIAM Studies in Applied Mathematics, (1990). doi: 10.1137/1.9781611970814.

[32]

R. J. Ryham, Existence, uniqueness, regularity and long-term behavior for dissipative systems modeling electrohydrodynamics,, , ().

[33]

R. J. Ryham, C. Liu and L. Zikatanov, Mathematical models for the deformation of electrolyte droplets,, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 649. doi: 10.3934/dcdsb.2007.8.649.

[34]

M. Schmuck, Analysis of the Navier-Stokes-Nernst-Planck-Poisson system,, Math. Models Methods Appl. Sci., 19 (2009), 993. doi: 10.1142/S0218202509003693.

[35]

M. Shahinpoor and K. J. Kim, Ionic polymer-metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles,, Smart Mater. Struct., 13 (2004), 1362. doi: 10.1088/0964-1726/13/6/009.

[36]

H. Triebel, Theory of Function Spaces,, Monogr. Math., (1983). doi: 10.1007/978-3-0346-0416-1.

[37]

T. Zhang, Global wellposedness problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space,, Commun. Math. Phys., 287 (2009), 211. doi: 10.1007/s00220-008-0631-1.

[38]

T. Zhang and D. Y. Fang, Global wellposed problem for the 3-D incompressible anisotropic Navier-Stokes equations,, J. Math. Pures Appl., 90 (2008), 413. doi: 10.1016/j.matpur.2008.06.008.

[39]

J. Zhao, C. Deng and S. Cui, Global well-posedness of a dissipative system arising in electrohydrodynamics in negative-order Besov spaces,, J. Math. Physics, 51 (2010). doi: 10.1063/1.3484184.

[40]

J. Zhao, C. Deng and S. Cui, Well-posedness of a dissipative system modeling electrohydrodynamics in Lebesgue spaces,, Differential Equations & Applications, 3 (2011), 427. doi: 10.7153/dea-03-27.

show all references

References:
[1]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der mathematischen Wissenschaften, (2011). doi: 10.1007/978-3-642-16830-7.

[2]

P. B. Balbuena and Y. Wang, Lithium-ion Batteries, Solid-electrolyte Interphase,, Imperial College Press, (2004). doi: 10.1142/p291.

[3]

J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires,, Ann. Sci. école Norm. Sup., 14 (1981), 209.

[4]

M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations,, Rev. Mat. Iberoam., 13 (1997), 515. doi: 10.4171/RMI/229.

[5]

M. Cannone, Y. Meyer and F. Planchon, Solutions Auto-similaires des ÉQuations de Navier-Stokes in $\mathbbR^3$,, Exposé n. VIII, (1994).

[6]

J.-Y. Chemin, Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel,, J. Anal. Math., 77 (1999), 27. doi: 10.1007/BF02791256.

[7]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes,, J. Differential Equations, 121 (1995), 314. doi: 10.1006/jdeq.1995.1131.

[8]

J.-Y. Chemin and P. Zhang, On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations,, Commun. Math. Phys., 272 (2007), 529. doi: 10.1007/s00220-007-0236-0.

[9]

R. Danchin, Local theory in critical spaces for compressible viscous and heat-conducting gases,, Comm. Partial Differential Equations, 26 (2001), 1183. doi: 10.1081/PDE-100106132.

[10]

R. Danchin, Fourier Analysis Methods for PDE's,, , (2005).

[11]

C. Deng, J. Zhao and S. Cui, Well-posedness for the Navier-Stokes-Nernst-Planck-Poisson system in Triebel-Lizorkin space and Besov space with negative indices,, J. Math. Anal. Appl., 377 (2011), 392. doi: 10.1016/j.jmaa.2010.11.011.

[12]

E. T. Enikov and B. J. Nelson, Electrotransport and deformation model of ion exchange membrane based actuators,, Smart Structures and Materials, 3978 (2000), 129. doi: 10.1117/12.387771.

[13]

E. T. Enikov and G. S. Seo, Analysis of water and proton fluxes in ion-exchange polymer-metal composite (IPMC) actuators subjected to large external potentials,, Sensors and Actuators, 122 (2005), 264. doi: 10.1016/j.sna.2005.02.042.

[14]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Arch. Rational Mech. Anal., 16 (1964), 269. doi: 10.1007/BF00276188.

[15]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system,, J. Differential Equations, 62 (1986), 186. doi: 10.1016/0022-0396(86)90096-3.

[16]

J. Huang, M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system with rough density,, Progress in Nonlinear Differential Equations and Their Applications, 84 (2013), 159. doi: 10.1007/978-1-4614-6348-1_9.

[17]

J. W. Jerome, Analytical approaches to charge transport in a moving medium,, Tran. Theo. Stat. Phys., 31 (2002), 333. doi: 10.1081/TT-120015505.

[18]

J. W. Jerome, The steady boundary value problem for charged incompressible fluids: PNP/Navier-Stokes systems,, Nonlinear Anal., 74 (2011), 7486. doi: 10.1016/j.na.2011.08.003.

[19]

J. W. Jerome and R. Sacco, Global weak solutions for an incompressible charged fluid with multi-scale couplings: Initial-boundary-value problem,, Nonlinear Anal., 71 (2009). doi: 10.1016/j.na.2009.05.047.

[20]

T. Kato, Strong $L^p$ solutions of the Navier-Stokes equations in $\mathbbR^m$ with applications to weak solutions,, Math. Z., 187 (1984), 471. doi: 10.1007/BF01174182.

[21]

T. Kato and G. Ponce, Well-posedness of the Euler and Navier-Stokes equations in the Lebesgue spaces $L_p^s(\mathbbR^2)$,, Rev. Mat. Iberoam., 2 (1986), 73. doi: 10.4171/RMI/26.

[22]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, Adv. Math., 157 (2001), 22. doi: 10.1006/aima.2000.1937.

[23]

P.-G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem,, Research Notes in Mathematics, (2002). doi: 10.1201/9781420035674.

[24]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193. doi: 10.1007/BF02547354.

[25]

M. Longaretti, B. Chini, J. W. Jerome and R. Sacco, Electrochemical modeling and characterization of voltage operated channels in nano-bio-electronics,, Sensor Letters, 6 (2008), 49. doi: 10.1166/sl.2008.010.

[26]

M. Longaretti, B. Chini, J. W. Jerome and R. Sacco, Computational modeling and simulation of complex systems in bio-electronics,, J. Computational Electronics, 7 (2008), 10.

[27]

M. Longaretti, G. Marino, B. Chini, J. W. Jerome and R. Sacco, Computational models in nano-bio-electronics: Simulation of ionic transport in voltage operated channels,, J. Nanoscience and Nanotechnology, 8 (2008), 3686.

[28]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces,, Commun. Math. Phys., 307 (2011), 713. doi: 10.1007/s00220-011-1350-6.

[29]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system,, J. Funct. Anal., 262 (2012), 3556. doi: 10.1016/j.jfa.2012.01.022.

[30]

F. Planchon, Sur un inégalité de type Poincaré,, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 21. doi: 10.1016/S0764-4442(00)88138-0.

[31]

I. Rubinstein, Electro-Diffusion of Ions,, SIAM Studies in Applied Mathematics, (1990). doi: 10.1137/1.9781611970814.

[32]

R. J. Ryham, Existence, uniqueness, regularity and long-term behavior for dissipative systems modeling electrohydrodynamics,, , ().

[33]

R. J. Ryham, C. Liu and L. Zikatanov, Mathematical models for the deformation of electrolyte droplets,, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 649. doi: 10.3934/dcdsb.2007.8.649.

[34]

M. Schmuck, Analysis of the Navier-Stokes-Nernst-Planck-Poisson system,, Math. Models Methods Appl. Sci., 19 (2009), 993. doi: 10.1142/S0218202509003693.

[35]

M. Shahinpoor and K. J. Kim, Ionic polymer-metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles,, Smart Mater. Struct., 13 (2004), 1362. doi: 10.1088/0964-1726/13/6/009.

[36]

H. Triebel, Theory of Function Spaces,, Monogr. Math., (1983). doi: 10.1007/978-3-0346-0416-1.

[37]

T. Zhang, Global wellposedness problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space,, Commun. Math. Phys., 287 (2009), 211. doi: 10.1007/s00220-008-0631-1.

[38]

T. Zhang and D. Y. Fang, Global wellposed problem for the 3-D incompressible anisotropic Navier-Stokes equations,, J. Math. Pures Appl., 90 (2008), 413. doi: 10.1016/j.matpur.2008.06.008.

[39]

J. Zhao, C. Deng and S. Cui, Global well-posedness of a dissipative system arising in electrohydrodynamics in negative-order Besov spaces,, J. Math. Physics, 51 (2010). doi: 10.1063/1.3484184.

[40]

J. Zhao, C. Deng and S. Cui, Well-posedness of a dissipative system modeling electrohydrodynamics in Lebesgue spaces,, Differential Equations & Applications, 3 (2011), 427. doi: 10.7153/dea-03-27.

[1]

Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517

[2]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[3]

Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11/12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143

[4]

Minghua Yang, Jinyi Sun. Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1617-1639. doi: 10.3934/cpaa.2017078

[5]

Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101

[6]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[7]

Weimin Peng, Yi Zhou. Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3845-3856. doi: 10.3934/dcds.2016.36.3845

[8]

Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315

[9]

L. Bedin, Mark Thompson. Existence theory for a Poisson-Nernst-Planck model of electrophoresis. Communications on Pure & Applied Analysis, 2013, 12 (1) : 157-206. doi: 10.3934/cpaa.2013.12.157

[10]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic & Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[11]

Chao Deng, Xiaohua Yao. Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in $\dot{F}^{-\alpha,r}_{\frac{3}{\alpha-1}}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 437-459. doi: 10.3934/dcds.2014.34.437

[12]

Victor A. Kovtunenko, Anna V. Zubkova. Mathematical modeling of a discontinuous solution of the generalized Poisson-Nernst-Planck problem in a two-phase medium. Kinetic & Related Models, 2018, 11 (1) : 119-135. doi: 10.3934/krm.2018007

[13]

Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865

[14]

Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185

[15]

Hi Jun Choe, Bataa Lkhagvasuren, Minsuk Yang. Wellposedness of the Keller-Segel Navier-Stokes equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2453-2464. doi: 10.3934/cpaa.2015.14.2453

[16]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure & Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[17]

Linglong Du, Haitao Wang. Pointwise wave behavior of the Navier-Stokes equations in half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1349-1363. doi: 10.3934/dcds.2018055

[18]

Yusheng Jia, Weishi Liu, Mingji Zhang. Qualitative properties of ionic flows via Poisson-Nernst-Planck systems with Bikerman's local hard-sphere potential: Ion size effects. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1775-1802. doi: 10.3934/dcdsb.2016022

[19]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[20]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-22. doi: 10.3934/dcdsb.2017149

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]