-
Previous Article
Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann problems with competing nonlinearities
- DCDS Home
- This Issue
-
Next Article
Computing Mather's $\beta$-function for Birkhoff billiards
Partially hyperbolic diffeomorphisms with a trapping property
1. | CMAT, Facultad de Ciencias, Universidad de la República, Igua 4225, Montevideo 11400, Uruguay |
References:
[1] |
A. Artigue, J. Brum and R. Potrie, Local product structure for expansive homeomorphisms,, Topology and its Applications, 156 (2009), 674.
doi: 10.1016/j.topol.2008.09.004. |
[2] |
C. Bonatti, L. Diaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective,, Encyclopaedia of Mathematical Sciences, (2005).
|
[3] |
C. Bonatti and M. Viana, SRB measures for partially hyperbolic diffeomorphisms whose central direction is mostly contracting,, Israel J. of Math., 115 (2000), 157.
doi: 10.1007/BF02810585. |
[4] |
C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds,, Topology, 44 (2005), 475.
doi: 10.1016/j.top.2004.10.009. |
[5] |
D. Bonhet, Codimension-1 partially hyperbolic diffeomorphisms with a uniformly compact center foliation,, Journal of Modern Dynamics, 7 (2013), 565.
doi: 10.3934/jmd.2013.7.565. |
[6] |
M. Brin, D. Burago and S. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus,, Journal of Modern Dynamics, 3 (2009), 1.
doi: 10.3934/jmd.2009.3.1. |
[7] |
K. Burns and A. Wilkinson, Dynamical coherence and center bunching,, Discrete and Continuous Dynamical Systems A (Pesin birthday issue), 22 (2008), 89.
doi: 10.3934/dcds.2008.22.89. |
[8] |
J. Buzzi and T. Fisher, Entropic stability beyond partial hyperbolicity,, Journal of Modern Dynamics, 7 (2013), 527.
doi: 10.3934/jmd.2013.7.527. |
[9] |
A. Candel and L. Conlon, Foliations I and II,, Graduate studies in Mathematics, (2003).
|
[10] |
P. Carrasco, Compact Dynamical Foliations,, Ph.D. Thesis, (2011).
|
[11] |
M. Carvalho, Sinai-Ruelle-Bowen measures for N-dimensional derived from Anosov diffeomorphisms,, Ergodic Theory and Dynamical Systems, 13 (1993), 21.
doi: 10.1017/S0143385700007185. |
[12] |
S. Crovisier and E. Pujals, Essential hyperbolicity and homoclinic bifurcations: A dichotomy phenomenon/mechanism for diffeomorphisms,, to appear in Inventiones Math., ().
doi: 10.1007/s00222-014-0553-9. |
[13] |
R. Daverman, Decompositions of Manifolds,, Pure and Applied Mathematics, (1986).
|
[14] |
T. Fisher, R. Potrie and M. Sambarino, Dynamical coherence for partially hyperbolic diffeomorphisms isotopic to Anosov on tori,, Mathematische Zeitchcrift, 278 (2014), 149.
doi: 10.1007/s00209-014-1310-x. |
[15] |
J. Franks, Anosov Diffeomorphisms,, Proc. Sympos. Pure Math., 14 (1970), 61.
|
[16] |
J. Franks, Homology and Dynamical Systems,, CBMS Regional Conference Series in Mathematics, (1982).
|
[17] |
A. Gogolev, Partially hyperbolic diffeomorphisms with compact center foliations,, Journal of Modern Dynamics, 5 (2011), 747.
doi: 10.3934/jmd.2011.5.747. |
[18] |
A. Gogolev and F. Rodriguez Hertz, Manifolds with higher homotopy which do not support Anosov diffeomorphisms,, Bulletin of the London Math Society, 46 (2014), 349.
doi: 10.1112/blms/bdt100. |
[19] |
A. Hammerlindl and R. Potrie, Pointwise partial hyperbolicity in three dimensional nilmanifolds,, Journal of the London Math. Society, 89 (2014), 853.
doi: 10.1112/jlms/jdu013. |
[20] |
A. Hammerlindl and R. Potrie, Classification of partially hyperbolic diffeomorphisms in three dimensional manifolds with solvable fundamental group,, to appear in Journal of Topology, (). |
[21] |
M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Springer Lecture Notes in Math., (1977).
|
[22] |
W. Hsiang and C. T. C. Wall, On homotopy tori II,, Bull. London Math. Soc., 1 (1969), 341.
doi: 10.1112/blms/1.3.341. |
[23] |
S. L. Jones, The impossibility of filling $E^n$ with arcs,, Bull. Amer. Math. Soc., 74 (1968), 155.
doi: 10.1090/S0002-9904-1968-11919-6. |
[24] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, With a supplementary chapter by Katok and Leonardo Mendoza, (1995).
doi: 10.1017/CBO9780511809187. |
[25] |
A. Manning, There are no new anosov on tori,, Amer. Jour. of Math., 96 (1974), 422.
doi: 10.2307/2373551. |
[26] |
R. Mañe, Contributions to the stability conjecture,, Topology, 17 (1978), 383.
doi: 10.1016/0040-9383(78)90005-8. |
[27] |
R. Mañe, Expansive homeomorphisms and topological dimension,, Trans. Amer. Math. Soc., 252 (1979), 313.
doi: 10.1090/S0002-9947-1979-0534124-9. |
[28] |
S. Newhouse, On codimension one Anosov diffeomorphisms,, Amer. Jour. of Math., 92 (1970), 761.
doi: 10.2307/2373372. |
[29] |
S. Newhouse, Hyperbolic limit sets,, Transactions of the A.M.S, 167 (1972), 125.
doi: 10.1090/S0002-9947-1972-0295388-6. |
[30] |
J. Ombach, Equivalent conditions for hyperbolic coordinates,, Topology and its Applications, 23 (1986), 87.
doi: 10.1016/0166-8641(86)90019-2. |
[31] |
R. Potrie, Wild Milnor attractors accumulated by lower dimensional dynamics,, Ergodic Theory and Dynamical Systems, 34 (2014), 236.
doi: 10.1017/etds.2012.124. |
[32] |
R. Potrie, Partially Hyperbolicity and Attracting Regions in 3-Dimensional Manifolds,, Ph.D Thesis, (2012). |
[33] |
R. Potrie, Partial hyperbolicity and foliations in $\mathbbT^3$,, Journal of Modern Dynamics, (2014). |
[34] |
R. Potrie, A few remarks on partially hyperbolic diffeomorphisms of $\mathbbT^3$ isotopic to Anosov,, Journal of Dynamics and Differential Equations, 26 (2014), 805.
doi: 10.1007/s10884-014-9362-5. |
[35] |
J. H. Roberts, Collections filling the plane,, Duke Math. J., 2 (1936), 10.
doi: 10.1215/S0012-7094-36-00202-8. |
[36] |
M. Roldan, Hyperbolic sets and entropy at the homological level,, preprint, (2014). |
[37] |
K. Shiraiwa, Manifolds which do not admit Anosov diffeomorphisms,, Nagoya Math J., 49 (1973), 111.
|
[38] |
J. L. Vieitez, Expansive homeomorphisms and hyperbolic diffeomorphisms on three manifolds,, Ergodic Theory and Dynamical Systems, 16 (1996), 591.
doi: 10.1017/S0143385700008981. |
show all references
References:
[1] |
A. Artigue, J. Brum and R. Potrie, Local product structure for expansive homeomorphisms,, Topology and its Applications, 156 (2009), 674.
doi: 10.1016/j.topol.2008.09.004. |
[2] |
C. Bonatti, L. Diaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective,, Encyclopaedia of Mathematical Sciences, (2005).
|
[3] |
C. Bonatti and M. Viana, SRB measures for partially hyperbolic diffeomorphisms whose central direction is mostly contracting,, Israel J. of Math., 115 (2000), 157.
doi: 10.1007/BF02810585. |
[4] |
C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds,, Topology, 44 (2005), 475.
doi: 10.1016/j.top.2004.10.009. |
[5] |
D. Bonhet, Codimension-1 partially hyperbolic diffeomorphisms with a uniformly compact center foliation,, Journal of Modern Dynamics, 7 (2013), 565.
doi: 10.3934/jmd.2013.7.565. |
[6] |
M. Brin, D. Burago and S. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus,, Journal of Modern Dynamics, 3 (2009), 1.
doi: 10.3934/jmd.2009.3.1. |
[7] |
K. Burns and A. Wilkinson, Dynamical coherence and center bunching,, Discrete and Continuous Dynamical Systems A (Pesin birthday issue), 22 (2008), 89.
doi: 10.3934/dcds.2008.22.89. |
[8] |
J. Buzzi and T. Fisher, Entropic stability beyond partial hyperbolicity,, Journal of Modern Dynamics, 7 (2013), 527.
doi: 10.3934/jmd.2013.7.527. |
[9] |
A. Candel and L. Conlon, Foliations I and II,, Graduate studies in Mathematics, (2003).
|
[10] |
P. Carrasco, Compact Dynamical Foliations,, Ph.D. Thesis, (2011).
|
[11] |
M. Carvalho, Sinai-Ruelle-Bowen measures for N-dimensional derived from Anosov diffeomorphisms,, Ergodic Theory and Dynamical Systems, 13 (1993), 21.
doi: 10.1017/S0143385700007185. |
[12] |
S. Crovisier and E. Pujals, Essential hyperbolicity and homoclinic bifurcations: A dichotomy phenomenon/mechanism for diffeomorphisms,, to appear in Inventiones Math., ().
doi: 10.1007/s00222-014-0553-9. |
[13] |
R. Daverman, Decompositions of Manifolds,, Pure and Applied Mathematics, (1986).
|
[14] |
T. Fisher, R. Potrie and M. Sambarino, Dynamical coherence for partially hyperbolic diffeomorphisms isotopic to Anosov on tori,, Mathematische Zeitchcrift, 278 (2014), 149.
doi: 10.1007/s00209-014-1310-x. |
[15] |
J. Franks, Anosov Diffeomorphisms,, Proc. Sympos. Pure Math., 14 (1970), 61.
|
[16] |
J. Franks, Homology and Dynamical Systems,, CBMS Regional Conference Series in Mathematics, (1982).
|
[17] |
A. Gogolev, Partially hyperbolic diffeomorphisms with compact center foliations,, Journal of Modern Dynamics, 5 (2011), 747.
doi: 10.3934/jmd.2011.5.747. |
[18] |
A. Gogolev and F. Rodriguez Hertz, Manifolds with higher homotopy which do not support Anosov diffeomorphisms,, Bulletin of the London Math Society, 46 (2014), 349.
doi: 10.1112/blms/bdt100. |
[19] |
A. Hammerlindl and R. Potrie, Pointwise partial hyperbolicity in three dimensional nilmanifolds,, Journal of the London Math. Society, 89 (2014), 853.
doi: 10.1112/jlms/jdu013. |
[20] |
A. Hammerlindl and R. Potrie, Classification of partially hyperbolic diffeomorphisms in three dimensional manifolds with solvable fundamental group,, to appear in Journal of Topology, (). |
[21] |
M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Springer Lecture Notes in Math., (1977).
|
[22] |
W. Hsiang and C. T. C. Wall, On homotopy tori II,, Bull. London Math. Soc., 1 (1969), 341.
doi: 10.1112/blms/1.3.341. |
[23] |
S. L. Jones, The impossibility of filling $E^n$ with arcs,, Bull. Amer. Math. Soc., 74 (1968), 155.
doi: 10.1090/S0002-9904-1968-11919-6. |
[24] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, With a supplementary chapter by Katok and Leonardo Mendoza, (1995).
doi: 10.1017/CBO9780511809187. |
[25] |
A. Manning, There are no new anosov on tori,, Amer. Jour. of Math., 96 (1974), 422.
doi: 10.2307/2373551. |
[26] |
R. Mañe, Contributions to the stability conjecture,, Topology, 17 (1978), 383.
doi: 10.1016/0040-9383(78)90005-8. |
[27] |
R. Mañe, Expansive homeomorphisms and topological dimension,, Trans. Amer. Math. Soc., 252 (1979), 313.
doi: 10.1090/S0002-9947-1979-0534124-9. |
[28] |
S. Newhouse, On codimension one Anosov diffeomorphisms,, Amer. Jour. of Math., 92 (1970), 761.
doi: 10.2307/2373372. |
[29] |
S. Newhouse, Hyperbolic limit sets,, Transactions of the A.M.S, 167 (1972), 125.
doi: 10.1090/S0002-9947-1972-0295388-6. |
[30] |
J. Ombach, Equivalent conditions for hyperbolic coordinates,, Topology and its Applications, 23 (1986), 87.
doi: 10.1016/0166-8641(86)90019-2. |
[31] |
R. Potrie, Wild Milnor attractors accumulated by lower dimensional dynamics,, Ergodic Theory and Dynamical Systems, 34 (2014), 236.
doi: 10.1017/etds.2012.124. |
[32] |
R. Potrie, Partially Hyperbolicity and Attracting Regions in 3-Dimensional Manifolds,, Ph.D Thesis, (2012). |
[33] |
R. Potrie, Partial hyperbolicity and foliations in $\mathbbT^3$,, Journal of Modern Dynamics, (2014). |
[34] |
R. Potrie, A few remarks on partially hyperbolic diffeomorphisms of $\mathbbT^3$ isotopic to Anosov,, Journal of Dynamics and Differential Equations, 26 (2014), 805.
doi: 10.1007/s10884-014-9362-5. |
[35] |
J. H. Roberts, Collections filling the plane,, Duke Math. J., 2 (1936), 10.
doi: 10.1215/S0012-7094-36-00202-8. |
[36] |
M. Roldan, Hyperbolic sets and entropy at the homological level,, preprint, (2014). |
[37] |
K. Shiraiwa, Manifolds which do not admit Anosov diffeomorphisms,, Nagoya Math J., 49 (1973), 111.
|
[38] |
J. L. Vieitez, Expansive homeomorphisms and hyperbolic diffeomorphisms on three manifolds,, Ergodic Theory and Dynamical Systems, 16 (1996), 591.
doi: 10.1017/S0143385700008981. |
[1] |
Keith Burns, Amie Wilkinson. Dynamical coherence and center bunching. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 89-100. doi: 10.3934/dcds.2008.22.89 |
[2] |
Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901 |
[3] |
Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227 |
[4] |
Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187-208. doi: 10.3934/jmd.2008.2.187 |
[5] |
Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527 |
[6] |
Michael Brin, Dmitri Burago, Sergey Ivanov. Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus. Journal of Modern Dynamics, 2009, 3 (1) : 1-11. doi: 10.3934/jmd.2009.3.1 |
[7] |
Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635 |
[8] |
Andy Hammerlindl. Partial hyperbolicity on 3-dimensional nilmanifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3641-3669. doi: 10.3934/dcds.2013.33.3641 |
[9] |
Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006 |
[10] |
Rafael Potrie. Partial hyperbolicity and foliations in $\mathbb{T}^3$. Journal of Modern Dynamics, 2015, 9: 81-121. doi: 10.3934/jmd.2015.9.81 |
[11] |
Alfredo Marzocchi, Sara Zandonella Necca. Attractors for dynamical systems in topological spaces. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 585-597. doi: 10.3934/dcds.2002.8.585 |
[12] |
Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587 |
[13] |
Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Approximation of attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 215-238. doi: 10.3934/dcdsb.2005.5.215 |
[14] |
Miguel Ângelo De Sousa Mendes. Quasi-invariant attractors of piecewise isometric systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 323-338. doi: 10.3934/dcds.2003.9.323 |
[15] |
Aaron W. Brown. Nonexpanding attractors: Conjugacy to algebraic models and classification in 3-manifolds. Journal of Modern Dynamics, 2010, 4 (3) : 517-548. doi: 10.3934/jmd.2010.4.517 |
[16] |
Antonio Algaba, Estanislao Gamero, Cristóbal García. The reversibility problem for quasi-homogeneous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3225-3236. doi: 10.3934/dcds.2013.33.3225 |
[17] |
Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems & Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020 |
[18] |
Björn Schmalfuss. Attractors for nonautonomous and random dynamical systems perturbed by impulses. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 727-744. doi: 10.3934/dcds.2003.9.727 |
[19] |
David Cheban. Global attractors of nonautonomous quasihomogeneous dynamical systems. Conference Publications, 2001, 2001 (Special) : 96-101. doi: 10.3934/proc.2001.2001.96 |
[20] |
Ahmed Y. Abdallah. Exponential attractors for second order lattice dynamical systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 803-813. doi: 10.3934/cpaa.2009.8.803 |
2016 Impact Factor: 1.099
Tools
Metrics
Other articles
by authors
[Back to Top]