2015, 35(8): 3315-3326. doi: 10.3934/dcds.2015.35.3315

Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit

1. 

Universidade Tecnológica Federal do Paraná - UTFPR, Av. Professora Laura Pacheco Bastos, 800 - Bairro Industrial, 85053-525, Guarapuava-PR, Brazil, Brazil

2. 

Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, Cidade Universitária, 05508-090 São Paulo, SP, Brazil

Received  November 2013 Revised  December 2014 Published  February 2015

Let $M$ be a compact $n$-dimensional Riemanian manifold, End($M$) the set of the endomorphisms of $M$ with the usual $\mathcal{C}^0$ topology and $\phi:M\to\mathbb{R}$ continuous. We prove, extending the main result of [2], that there exists a dense subset of $\mathcal{A}$ of End($M$) such that, if $f\in\mathcal{A}$, there exists a $f$ invariant measure $\mu_{\max}$ supported on a periodic orbit that maximizes the integral of $\phi$ among all $f$ invariant Borel probability measures.
Citation: Tatiane C. Batista, Juliano S. Gonschorowski, Fábio A. Tal. Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3315-3326. doi: 10.3934/dcds.2015.35.3315
References:
[1]

S. Addas-Zanata and F. A. Tal, Support of maximizing measures for typical $\mathcalC^0$ dynamics on compact manifolds,, Discrete Contin. Dyn. Syst., 26 (2010), 795. doi: 10.3934/dcds.2010.26.795.

[2]

S. Addas-Zanata and F. A. Tal, Maximizing measures for endomorphisms of the circle,, Nonlinearity, 21 (2008), 2347. doi: 10.1088/0951-7715/21/10/008.

[3]

S. Addas-Zanata and F. A. Tal, On maximizing measures of homeomorphisms on compact manifolds,, Fund. Math., 200 (2008), 145. doi: 10.4064/fm200-2-3.

[4]

G. Atkinson, Recurrence of cocycles and random walks,, J. London Math. Soc., 13 (1976), 486.

[5]

T. Bousch, La condition de Walters,, Ann. Sci. École Norm. Sup. (4), 34 (2001), 287. doi: 10.1016/S0012-9593(00)01062-4.

[6]

G. Contreras, A. O. Lopes and P. Thieullen, Lyapunov minimizing measures for expanding maps of the circle,, Ergodic Theory Dynam. Systems, 21 (2001), 1379. doi: 10.1017/S0143385701001663.

[7]

G. Contreras, J. Delgado and R. Iturriaga, Lagrangian flows: The dynamics of globally minimizing orbits. II,, Bol. Soc. Brasil. Mat. (N.S.), 28 (1997), 155. doi: 10.1007/BF01233390.

[8]

J. P. Conze and Y. Guivarch, Croissance des sommes ergodiques et principe variationnel, 1993,, Manuscript., ().

[9]

E. Garibaldi and P. Thieullen, Minimizing orbits in the discrete Aubry-Mather model,, Nonlinearity, 24 (2011), 563. doi: 10.1088/0951-7715/24/2/008.

[10]

O. Jenkinson, Ergodic optimization,, Discrete Contin. Dyn. Syst., 15 (2006), 197. doi: 10.3934/dcds.2006.15.197.

[11]

O. Jenkinson and I. D. Morris, Lyapunov optimizing measures for $C^1$ expanding maps of the circle,, Ergodic Theory Dynam. Systems, 28 (2008), 1849. doi: 10.1017/S0143385708000333.

[12]

A. O. Lopes and P. Thieullen, Sub-actions for Anosov diffeomorphisms,, Astérisque, II (2003), 135.

[13]

I. D. Morris, Ergodic optimization for generic continuous functions,, Discrete Contin. Dyn. Syst., 27 (2010), 383. doi: 10.3934/dcds.2010.27.383.

show all references

References:
[1]

S. Addas-Zanata and F. A. Tal, Support of maximizing measures for typical $\mathcalC^0$ dynamics on compact manifolds,, Discrete Contin. Dyn. Syst., 26 (2010), 795. doi: 10.3934/dcds.2010.26.795.

[2]

S. Addas-Zanata and F. A. Tal, Maximizing measures for endomorphisms of the circle,, Nonlinearity, 21 (2008), 2347. doi: 10.1088/0951-7715/21/10/008.

[3]

S. Addas-Zanata and F. A. Tal, On maximizing measures of homeomorphisms on compact manifolds,, Fund. Math., 200 (2008), 145. doi: 10.4064/fm200-2-3.

[4]

G. Atkinson, Recurrence of cocycles and random walks,, J. London Math. Soc., 13 (1976), 486.

[5]

T. Bousch, La condition de Walters,, Ann. Sci. École Norm. Sup. (4), 34 (2001), 287. doi: 10.1016/S0012-9593(00)01062-4.

[6]

G. Contreras, A. O. Lopes and P. Thieullen, Lyapunov minimizing measures for expanding maps of the circle,, Ergodic Theory Dynam. Systems, 21 (2001), 1379. doi: 10.1017/S0143385701001663.

[7]

G. Contreras, J. Delgado and R. Iturriaga, Lagrangian flows: The dynamics of globally minimizing orbits. II,, Bol. Soc. Brasil. Mat. (N.S.), 28 (1997), 155. doi: 10.1007/BF01233390.

[8]

J. P. Conze and Y. Guivarch, Croissance des sommes ergodiques et principe variationnel, 1993,, Manuscript., ().

[9]

E. Garibaldi and P. Thieullen, Minimizing orbits in the discrete Aubry-Mather model,, Nonlinearity, 24 (2011), 563. doi: 10.1088/0951-7715/24/2/008.

[10]

O. Jenkinson, Ergodic optimization,, Discrete Contin. Dyn. Syst., 15 (2006), 197. doi: 10.3934/dcds.2006.15.197.

[11]

O. Jenkinson and I. D. Morris, Lyapunov optimizing measures for $C^1$ expanding maps of the circle,, Ergodic Theory Dynam. Systems, 28 (2008), 1849. doi: 10.1017/S0143385708000333.

[12]

A. O. Lopes and P. Thieullen, Sub-actions for Anosov diffeomorphisms,, Astérisque, II (2003), 135.

[13]

I. D. Morris, Ergodic optimization for generic continuous functions,, Discrete Contin. Dyn. Syst., 27 (2010), 383. doi: 10.3934/dcds.2010.27.383.

[1]

Ilie Ugarcovici. On hyperbolic measures and periodic orbits. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 505-512. doi: 10.3934/dcds.2006.16.505

[2]

Misha Bialy. Maximizing orbits for higher-dimensional convex billiards. Journal of Modern Dynamics, 2009, 3 (1) : 51-59. doi: 10.3934/jmd.2009.3.51

[3]

Krerley Oliveira, Marcelo Viana. Existence and uniqueness of maximizing measures for robust classes of local diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 225-236. doi: 10.3934/dcds.2006.15.225

[4]

Salvador Addas-Zanata, Fábio A. Tal. Support of maximizing measures for typical $\mathcal{C}^0$ dynamics on compact manifolds. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 795-804. doi: 10.3934/dcds.2010.26.795

[5]

Ana Cristina Mereu, Marco Antonio Teixeira. Reversibility and branching of periodic orbits. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1177-1199. doi: 10.3934/dcds.2013.33.1177

[6]

Katrin Gelfert, Christian Wolf. On the distribution of periodic orbits. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 949-966. doi: 10.3934/dcds.2010.26.949

[7]

Jacky Cresson, Christophe Guillet. Periodic orbits and Arnold diffusion. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 451-470. doi: 10.3934/dcds.2003.9.451

[8]

Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185

[9]

Flávia M. Branco. Sub-actions and maximizing measures for one-dimensional transformations with a critical point. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 271-280. doi: 10.3934/dcds.2007.17.271

[10]

Alain Jacquemard, Weber Flávio Pereira. On periodic orbits of polynomial relay systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 331-347. doi: 10.3934/dcds.2007.17.331

[11]

Peter Albers, Jean Gutt, Doris Hein. Periodic Reeb orbits on prequantization bundles. Journal of Modern Dynamics, 2018, 12: 123-150. doi: 10.3934/jmd.2018005

[12]

Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94.

[13]

Jan Sieber, Matthias Wolfrum, Mark Lichtner, Serhiy Yanchuk. On the stability of periodic orbits in delay equations with large delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3109-3134. doi: 10.3934/dcds.2013.33.3109

[14]

Jorge Rebaza. Bifurcations and periodic orbits in variable population interactions. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2997-3012. doi: 10.3934/cpaa.2013.12.2997

[15]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[16]

Răzvan M. Tudoran. On the control of stability of periodic orbits of completely integrable systems. Journal of Geometric Mechanics, 2015, 7 (1) : 109-124. doi: 10.3934/jgm.2015.7.109

[17]

Corey Shanbrom. Periodic orbits in the Kepler-Heisenberg problem. Journal of Geometric Mechanics, 2014, 6 (2) : 261-278. doi: 10.3934/jgm.2014.6.261

[18]

Luca Dieci, Timo Eirola, Cinzia Elia. Periodic orbits of planar discontinuous system under discretization. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2743-2762. doi: 10.3934/dcdsb.2018103

[19]

Rossella Bartolo. Periodic orbits on Riemannian manifolds with convex boundary. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 439-450. doi: 10.3934/dcds.1997.3.439

[20]

Piotr Oprocha, Xinxing Wu. On averaged tracing of periodic average pseudo orbits. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4943-4957. doi: 10.3934/dcds.2017212

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

[Back to Top]