2015, 35(7): 2845-2861. doi: 10.3934/dcds.2015.35.2845

Morse decomposition of global attractors with infinite components

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla, Spain

2. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla

3. 

Centro de Investigación Operativa, Universidad Miguel Hernández de Elche, Avda. de la Universidad, s/n, 03202 Elche

Received  December 2013 Revised  December 2014 Published  January 2015

In this paper we describe some dynamical properties of a Morse decomposition with a countable number of sets. In particular, we are able to prove that the gradient dynamics on Morse sets together with a separation assumption is equivalent to the existence of an ordered Lyapunov function associated to the Morse sets and also to the existence of a Morse decomposition -that is, the global attractor can be described as an increasing family of local attractors and their associated repellers.
Citation: Tomás Caraballo, Juan C. Jara, José A. Langa, José Valero. Morse decomposition of global attractors with infinite components. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2845-2861. doi: 10.3934/dcds.2015.35.2845
References:
[1]

E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho and J. A. Langa, Stability of gradient semigroups under perturbation,, Nonlinearity, 24 (2011), 2099. doi: 10.1088/0951-7715/24/7/010.

[2]

E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho and J. A. Langa, Continuity of Lyapunov functions and of energy level for a generalized gradient system,, Topological Methods Nonl. Anal., 39 (2012), 57.

[3]

J. M. Arrieta, A. Rodríguez-Bernal and J. Valero, Dynamics of a reaction-diffusion equation with a discontinuous nonlinearity,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), 2695. doi: 10.1142/S0218127406016586.

[4]

A. V. Babin and M. I. Vishik, Attractors in Evolutionary Equations,, Studies in Mathematics and its Applications, (1992).

[5]

A. N. Carvalho and J. A. Langa, An extension of the concept of gradient semigroups which is stable under perturbation,, J. Differential Equations, 246 (2009), 2646. doi: 10.1016/j.jde.2009.01.007.

[6]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, Applied Mathematical Series, (2013). doi: 10.1007/978-1-4614-4581-4.

[7]

A. N. Carvalho, J. A. Langa, J. C. Robinson and A. Suárez, Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system,, J. Differential Equations, 236 (2007), 570. doi: 10.1016/j.jde.2007.01.017.

[8]

C. Conley, Isolated Invariant Sets and the Morse Index,, CBMS Regional Conference Series in Mathematics, (1978).

[9]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs Number, (1988).

[10]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981).

[11]

M. Hurley, Chain recurrence, semiflows and gradients,, J. Dyn. Diff. Equations, 7 (1995), 437. doi: 10.1007/BF02219371.

[12]

O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations,, Cambridge University Press, (1991). doi: 10.1017/CBO9780511569418.

[13]

D. E. Norton, The fundamental theorem of dynamical systems,, Comment. Math., 36 (1995), 585.

[14]

M. Patrao, Morse decomposition of semiflows on topological spaces,, J. Dyn. Diff. Equations, 19 (2007), 181. doi: 10.1007/s10884-006-9033-2.

[15]

M. Patrao and Luiz A.B. San Martin, Semiflows on topological spaces: Chain transitivity and semigroups,, J. Dyn. Diff. Equations, 19 (2007), 155. doi: 10.1007/s10884-006-9032-3.

[16]

J. C. Robinson, Infinite-Dimensional Dynamical Systems,, Cambridge University Press, (2001). doi: 10.1007/978-94-010-0732-0.

[17]

K. P. Rybakowski, The Homotopy Index and Partial Differential Equations,, Universitext, (1987). doi: 10.1007/978-3-642-72833-4.

[18]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Applied Mathematical Sciences, (2002). doi: 10.1007/978-1-4757-5037-9.

[19]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Applied Mathematical Sciences, (1988). doi: 10.1007/978-1-4684-0313-8.

[20]

M. I. Vishik, Asymptotic Behaviour of Solutions of Evolutionary Equations,, Cambridge University Press, (1992).

show all references

References:
[1]

E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho and J. A. Langa, Stability of gradient semigroups under perturbation,, Nonlinearity, 24 (2011), 2099. doi: 10.1088/0951-7715/24/7/010.

[2]

E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho and J. A. Langa, Continuity of Lyapunov functions and of energy level for a generalized gradient system,, Topological Methods Nonl. Anal., 39 (2012), 57.

[3]

J. M. Arrieta, A. Rodríguez-Bernal and J. Valero, Dynamics of a reaction-diffusion equation with a discontinuous nonlinearity,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), 2695. doi: 10.1142/S0218127406016586.

[4]

A. V. Babin and M. I. Vishik, Attractors in Evolutionary Equations,, Studies in Mathematics and its Applications, (1992).

[5]

A. N. Carvalho and J. A. Langa, An extension of the concept of gradient semigroups which is stable under perturbation,, J. Differential Equations, 246 (2009), 2646. doi: 10.1016/j.jde.2009.01.007.

[6]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, Applied Mathematical Series, (2013). doi: 10.1007/978-1-4614-4581-4.

[7]

A. N. Carvalho, J. A. Langa, J. C. Robinson and A. Suárez, Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system,, J. Differential Equations, 236 (2007), 570. doi: 10.1016/j.jde.2007.01.017.

[8]

C. Conley, Isolated Invariant Sets and the Morse Index,, CBMS Regional Conference Series in Mathematics, (1978).

[9]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs Number, (1988).

[10]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981).

[11]

M. Hurley, Chain recurrence, semiflows and gradients,, J. Dyn. Diff. Equations, 7 (1995), 437. doi: 10.1007/BF02219371.

[12]

O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations,, Cambridge University Press, (1991). doi: 10.1017/CBO9780511569418.

[13]

D. E. Norton, The fundamental theorem of dynamical systems,, Comment. Math., 36 (1995), 585.

[14]

M. Patrao, Morse decomposition of semiflows on topological spaces,, J. Dyn. Diff. Equations, 19 (2007), 181. doi: 10.1007/s10884-006-9033-2.

[15]

M. Patrao and Luiz A.B. San Martin, Semiflows on topological spaces: Chain transitivity and semigroups,, J. Dyn. Diff. Equations, 19 (2007), 155. doi: 10.1007/s10884-006-9032-3.

[16]

J. C. Robinson, Infinite-Dimensional Dynamical Systems,, Cambridge University Press, (2001). doi: 10.1007/978-94-010-0732-0.

[17]

K. P. Rybakowski, The Homotopy Index and Partial Differential Equations,, Universitext, (1987). doi: 10.1007/978-3-642-72833-4.

[18]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Applied Mathematical Sciences, (2002). doi: 10.1007/978-1-4757-5037-9.

[19]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Applied Mathematical Sciences, (1988). doi: 10.1007/978-1-4684-0313-8.

[20]

M. I. Vishik, Asymptotic Behaviour of Solutions of Evolutionary Equations,, Cambridge University Press, (1992).

[1]

Ming-Chia Li. Stability of parameterized Morse-Smale gradient-like flows. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1073-1077. doi: 10.3934/dcds.2003.9.1073

[2]

Peter Takáč. Stabilization of positive solutions for analytic gradient-like systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 947-973. doi: 10.3934/dcds.2000.6.947

[3]

Maurizio Grasselli, Morgan Pierre. Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems . Communications on Pure & Applied Analysis, 2012, 11 (6) : 2393-2416. doi: 10.3934/cpaa.2012.11.2393

[4]

Rafael Ayala, Jose Antonio Vilches, Gregor Jerše, Neža Mramor Kosta. Discrete gradient fields on infinite complexes. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 623-639. doi: 10.3934/dcds.2011.30.623

[5]

J. K. Krottje. On the dynamics of a mixed parabolic-gradient system . Communications on Pure & Applied Analysis, 2003, 2 (4) : 521-537. doi: 10.3934/cpaa.2003.2.521

[6]

Qinghua Ma, Zuoliang Xu, Liping Wang. Recovery of the local volatility function using regularization and a gradient projection method. Journal of Industrial & Management Optimization, 2015, 11 (2) : 421-437. doi: 10.3934/jimo.2015.11.421

[7]

Yanfei Wang, Qinghua Ma. A gradient method for regularizing retrieval of aerosol particle size distribution function. Journal of Industrial & Management Optimization, 2009, 5 (1) : 115-126. doi: 10.3934/jimo.2009.5.115

[8]

Sergey A. Denisov. Infinite superlinear growth of the gradient for the two-dimensional Euler equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 755-764. doi: 10.3934/dcds.2009.23.755

[9]

Mauro Patrão, Luiz A. B. San Martin. Morse decomposition of semiflows on fiber bundles. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 561-587. doi: 10.3934/dcds.2007.17.561

[10]

Carlos Cabrera, Peter Makienko, Peter Plaumann. Semigroup representations in holomorphic dynamics. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1333-1349. doi: 10.3934/dcds.2013.33.1333

[11]

Arnaud Goullet, Shaun Harker, Konstantin Mischaikow, William D. Kalies, Dinesh Kasti. Efficient computation of Lyapunov functions for Morse decompositions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2419-2451. doi: 10.3934/dcdsb.2015.20.2419

[12]

Delio Mugnolo, René Pröpper. Gradient systems on networks. Conference Publications, 2011, 2011 (Special) : 1078-1090. doi: 10.3934/proc.2011.2011.1078

[13]

Yuhong Dai, Ya-xiang Yuan. Analysis of monotone gradient methods. Journal of Industrial & Management Optimization, 2005, 1 (2) : 181-192. doi: 10.3934/jimo.2005.1.181

[14]

Karoline Disser, Matthias Liero. On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks & Heterogeneous Media, 2015, 10 (2) : 233-253. doi: 10.3934/nhm.2015.10.233

[15]

Siniša Slijepčević. Extended gradient systems: Dimension one. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 503-518. doi: 10.3934/dcds.2000.6.503

[16]

Massimiliano Berti, M. Matzeu, Enrico Valdinoci. On periodic elliptic equations with gradient dependence. Communications on Pure & Applied Analysis, 2008, 7 (3) : 601-615. doi: 10.3934/cpaa.2008.7.601

[17]

Matthias Liero, Alexander Mielke, Mark A. Peletier, D. R. Michiel Renger. On microscopic origins of generalized gradient structures. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 1-35. doi: 10.3934/dcdss.2017001

[18]

Alain Haraux. Some applications of the Łojasiewicz gradient inequality. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2417-2427. doi: 10.3934/cpaa.2012.11.2417

[19]

Vladimír Špitalský. Transitive dendrite map with infinite decomposition ideal. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 771-792. doi: 10.3934/dcds.2015.35.771

[20]

Thiago Ferraiol, Mauro Patrão, Lucas Seco. Jordan decomposition and dynamics on flag manifolds. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 923-947. doi: 10.3934/dcds.2010.26.923

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (2)

[Back to Top]