2015, 35(5): 2099-2122. doi: 10.3934/dcds.2015.35.2099

Unbounded regime for circle maps with a flat interval

1. 

Institute of Mathematics of PAN, ul. Śniadeckich 8, 00-956 Warszawa, Poland

Received  May 2014 Revised  October 2014 Published  December 2014

We study $\mathcal{C}^2$ weakly order preserving circle maps with a flat interval. In particular we are interested in the geometry of the mapping near to the singularities at the boundary of the flat interval. Without any assumption on the rotation number we show that the geometry is degenerate when the degree of the singularities is less than or equal to two and becomes bounded when the degree goes to three. As an example of application, the result is applied to study Cherry flows.
Citation: Liviana Palmisano. Unbounded regime for circle maps with a flat interval. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2099-2122. doi: 10.3934/dcds.2015.35.2099
References:
[1]

S. K. Aranson, G. R. Belitsky and E. V. Zhuzhoma, Introduction to the Qualitative Theory of Dynamical Systems on Surfaces, vol. 153 of Translations of Mathematical Monographs,, American Mathematical Society, (1996).

[2]

T. M. Cherry, Analytic Quasi-Periodic Curves of Discontinuous Type on a Torus,, Proc. London Math. Soc., S2-44 (1938), 2. doi: 10.1112/plms/s2-44.3.175.

[3]

W. de Melo and S. van Strien, One-dimensional Dynamics, vol. 25 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3),, Springer-Verlag, (1993). doi: 10.1007/978-3-642-78043-1.

[4]

J. Graczyk, L. B. Jonker, G. Świątek, F. M. Tangerman and J. J. P. Veerman, Differentiable circle maps with a flat interval,, Comm. Math. Phys., 173 (1995), 599. doi: 10.1007/BF02101658.

[5]

J. Graczyk, Dynamics of circle maps with flat spots,, Fund. Math., 209 (2010), 267. doi: 10.4064/fm209-3-4.

[6]

J. Graczyk, D. Sands and G. Świątek, Metric attractors for smooth unimodal maps,, Ann. of Math. (2), 159 (2004), 725. doi: 10.4007/annals.2004.159.725.

[7]

M. Martens, S. van Strien, W. de Melo and P. Mendes, On Cherry flows,, Ergodic Theory Dynam. Systems, 10 (1990), 531. doi: 10.1017/S0143385700005733.

[8]

P. Mendes, A metric property of Cherry vector fields on the torus,, J. Differential Equations, 89 (1991), 305. doi: 10.1016/0022-0396(91)90123-Q.

[9]

P. C. Moreira and A. A. G. Ruas, Metric properties of Cherry flows,, J. Differential Equations, 97 (1992), 16. doi: 10.1016/0022-0396(92)90081-W.

[10]

L. Palmisano, On physical measures for cherry flows,, Preprint., ().

[11]

L. Palmisano, Sur les Applications du Cercle Avec un Intervalle Plat et Flots de Cherry,, PhD thesis, (2013).

[12]

L. Palmisano, A phase transition for circle maps and cherry flows,, Comm. Math. Phys., 321 (2013), 135. doi: 10.1007/s00220-013-1685-2.

[13]

R. Saghin and E. Vargas, Invariant measures for Cherry flows,, Comm. Math. Phys., 317 (2013), 55. doi: 10.1007/s00220-012-1611-z.

[14]

G. Świątek, Rational rotation numbers for maps of the circle,, Comm. Math. Phys., 119 (1988), 109. doi: 10.1007/BF01218263.

[15]

F. M. Tangerman and J. J. P. Veerman, Scalings in circle maps. II,, Comm. Math. Phys., 141 (1991), 279. doi: 10.1007/BF02101506.

[16]

S. van Strien, Hyperbolicity and invariant measures for general $C^2$ interval maps satisfying the Misiurewicz condition,, Comm. Math. Phys., 128 (1990), 437. doi: 10.1007/BF02096868.

[17]

J. J. P. Veerman, Irrational rotation numbers,, Nonlinearity, 2 (1989), 419. doi: 10.1088/0951-7715/2/3/003.

[18]

J. J. P. Veerman and F. M. Tangerman, Scalings in circle maps. I,, Comm. Math. Phys., 134 (1990), 89. doi: 10.1007/BF02102091.

show all references

References:
[1]

S. K. Aranson, G. R. Belitsky and E. V. Zhuzhoma, Introduction to the Qualitative Theory of Dynamical Systems on Surfaces, vol. 153 of Translations of Mathematical Monographs,, American Mathematical Society, (1996).

[2]

T. M. Cherry, Analytic Quasi-Periodic Curves of Discontinuous Type on a Torus,, Proc. London Math. Soc., S2-44 (1938), 2. doi: 10.1112/plms/s2-44.3.175.

[3]

W. de Melo and S. van Strien, One-dimensional Dynamics, vol. 25 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3),, Springer-Verlag, (1993). doi: 10.1007/978-3-642-78043-1.

[4]

J. Graczyk, L. B. Jonker, G. Świątek, F. M. Tangerman and J. J. P. Veerman, Differentiable circle maps with a flat interval,, Comm. Math. Phys., 173 (1995), 599. doi: 10.1007/BF02101658.

[5]

J. Graczyk, Dynamics of circle maps with flat spots,, Fund. Math., 209 (2010), 267. doi: 10.4064/fm209-3-4.

[6]

J. Graczyk, D. Sands and G. Świątek, Metric attractors for smooth unimodal maps,, Ann. of Math. (2), 159 (2004), 725. doi: 10.4007/annals.2004.159.725.

[7]

M. Martens, S. van Strien, W. de Melo and P. Mendes, On Cherry flows,, Ergodic Theory Dynam. Systems, 10 (1990), 531. doi: 10.1017/S0143385700005733.

[8]

P. Mendes, A metric property of Cherry vector fields on the torus,, J. Differential Equations, 89 (1991), 305. doi: 10.1016/0022-0396(91)90123-Q.

[9]

P. C. Moreira and A. A. G. Ruas, Metric properties of Cherry flows,, J. Differential Equations, 97 (1992), 16. doi: 10.1016/0022-0396(92)90081-W.

[10]

L. Palmisano, On physical measures for cherry flows,, Preprint., ().

[11]

L. Palmisano, Sur les Applications du Cercle Avec un Intervalle Plat et Flots de Cherry,, PhD thesis, (2013).

[12]

L. Palmisano, A phase transition for circle maps and cherry flows,, Comm. Math. Phys., 321 (2013), 135. doi: 10.1007/s00220-013-1685-2.

[13]

R. Saghin and E. Vargas, Invariant measures for Cherry flows,, Comm. Math. Phys., 317 (2013), 55. doi: 10.1007/s00220-012-1611-z.

[14]

G. Świątek, Rational rotation numbers for maps of the circle,, Comm. Math. Phys., 119 (1988), 109. doi: 10.1007/BF01218263.

[15]

F. M. Tangerman and J. J. P. Veerman, Scalings in circle maps. II,, Comm. Math. Phys., 141 (1991), 279. doi: 10.1007/BF02101506.

[16]

S. van Strien, Hyperbolicity and invariant measures for general $C^2$ interval maps satisfying the Misiurewicz condition,, Comm. Math. Phys., 128 (1990), 437. doi: 10.1007/BF02096868.

[17]

J. J. P. Veerman, Irrational rotation numbers,, Nonlinearity, 2 (1989), 419. doi: 10.1088/0951-7715/2/3/003.

[18]

J. J. P. Veerman and F. M. Tangerman, Scalings in circle maps. I,, Comm. Math. Phys., 134 (1990), 89. doi: 10.1007/BF02102091.

[1]

Paul Wright. Differentiability of Hausdorff dimension of the non-wandering set in a planar open billiard. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3993-4014. doi: 10.3934/dcds.2016.36.3993

[2]

Song Shao, Xiangdong Ye. Non-wandering sets of the powers of maps of a star. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1175-1184. doi: 10.3934/dcds.2003.9.1175

[3]

Chui-Jie Wu. Large optimal truncated low-dimensional dynamical systems. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 559-583. doi: 10.3934/dcds.1996.2.559

[4]

Dmitrii Rachinskii. Realization of arbitrary hysteresis by a low-dimensional gradient flow. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 227-243. doi: 10.3934/dcdsb.2016.21.227

[5]

Andrey Sarychev. Controllability of the cubic Schroedinger equation via a low-dimensional source term. Mathematical Control & Related Fields, 2012, 2 (3) : 247-270. doi: 10.3934/mcrf.2012.2.247

[6]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[7]

Mickaël D. Chekroun, Michael Ghil, Honghu Liu, Shouhong Wang. Low-dimensional Galerkin approximations of nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4133-4177. doi: 10.3934/dcds.2016.36.4133

[8]

John Banks, Brett Stanley. A note on equivalent definitions of topological transitivity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1293-1296. doi: 10.3934/dcds.2013.33.1293

[9]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[10]

Andrey Sarychev. Errata: Controllability of the cubic Schroedinger equation via a low-dimensional source term. Mathematical Control & Related Fields, 2014, 4 (2) : 261-261. doi: 10.3934/mcrf.2014.4.261

[11]

Chui-Jie Wu, Hongliang Zhao. Generalized HWD-POD method and coupling low-dimensional dynamical system of turbulence. Conference Publications, 2001, 2001 (Special) : 371-379. doi: 10.3934/proc.2001.2001.371

[12]

Alfonso Artigue. Discrete and continuous topological dynamics: Fields of cross sections and expansive flows. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5911-5927. doi: 10.3934/dcds.2016059

[13]

Suzanne Lynch Hruska. Rigorous numerical models for the dynamics of complex Hénon mappings on their chain recurrent sets. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 529-558. doi: 10.3934/dcds.2006.15.529

[14]

Hicham Zmarrou, Ale Jan Homburg. Dynamics and bifurcations of random circle diffeomorphism. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 719-731. doi: 10.3934/dcdsb.2008.10.719

[15]

Marcelo R. R. Alves. Positive topological entropy for Reeb flows on 3-dimensional Anosov contact manifolds. Journal of Modern Dynamics, 2016, 10: 497-509. doi: 10.3934/jmd.2016.10.497

[16]

Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327

[17]

Chris Good, Sergio Macías. What is topological about topological dynamics?. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1007-1031. doi: 10.3934/dcds.2018043

[18]

Alex Mahalov, Mohamed Moustaoui, Basil Nicolaenko. Three-dimensional instabilities in non-parallel shear stratified flows. Kinetic & Related Models, 2009, 2 (1) : 215-229. doi: 10.3934/krm.2009.2.215

[19]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[20]

Xueting Tian. Topological pressure for the completely irregular set of birkhoff averages. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2745-2763. doi: 10.3934/dcds.2017118

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]