• Previous Article
    A variational approach to reaction-diffusion equations with forced speed in dimension 1
  • DCDS Home
  • This Issue
  • Next Article
    Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces
2015, 35(5): 1873-1890. doi: 10.3934/dcds.2015.35.1873

Stability of singular limit cycles for Abel equations

1. 

Departamento de Matemáticas, Universidad de Extremadura, Badajoz 06006, Spain, Spain

2. 

Dept. de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona

Received  March 2014 Revised  September 2014 Published  December 2014

We obtain a criterion for determining the stability of singular limit cycles of Abel equations $x'=A(t)x^3+B(t)x^2$. This stability controls the possible saddle-node bifurcations of limit cycles. Therefore, studying the Hopf-like bifurcations at $x=0$, together with the bifurcations at infinity of a suitable compactification of the equations, we obtain upper bounds of their number of limit cycles. As an illustration of this approach, we prove that the family $x'=a t(t-t_A)x^3+b (t-t_B)x^2$, with $a ,b>0$, has at most two positive limit cycles for any $t_B,t_A$.
Citation: José Luis Bravo, Manuel Fernández, Armengol Gasull. Stability of singular limit cycles for Abel equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1873-1890. doi: 10.3934/dcds.2015.35.1873
References:
[1]

M. J. Álvarez, A. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations,, J. Differential Equations, 234 (2007), 161. doi: 10.1016/j.jde.2006.11.004.

[2]

M. A. M. Alwash and N. G. Lloyd, Nonautonomous equations related to polynomial two dimensional systems,, Proc. Roy. Soc. Edinburgh Sect. A 105 (1987), 105 (1987), 129. doi: 10.1017/S0308210500021971.

[3]

A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems,, Halsted Press (A division of John Wiley & Sons), (1973).

[4]

D. M. Benardete, V. W. Noonburg and B. Pollina, Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation,, Amer. Math. Monthly, 115 (2008), 202.

[5]

J. L. Bravo, M. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs,, Int. J. Bif. Chaos, 19 (2009), 3869. doi: 10.1142/S0218127409025195.

[6]

J. L. Bravo and J. Torregrosa, Abel-like equations with no periodic solutions,, J. Math. Anal. Appl., 342 (2008), 931. doi: 10.1016/j.jmaa.2007.12.060.

[7]

L. A. Cherkas, Number of limit cycles of an autonomous second-order system,, Diff. Eq., 12 (1976), 944.

[8]

G. F. D. Duff, Limit-cycles and rotated vector fields,, Ann. of Math., 57 (1953), 15. doi: 10.2307/1969724.

[9]

E. Fossas, J. M. Olm and H. Sira-Ramírez, Iterative approximation of limit cycles for a class of Abel equations,, Phys. D, 237 (2008), 3159. doi: 10.1016/j.physd.2008.05.011.

[10]

A. Gasull and A. Guillamon, Limit cycles for generalized Abel equations,, Int. J. Bif. Chaos, 16 (2006), 3737. doi: 10.1142/S0218127406017130.

[11]

A. Gasull and J. Llibre, Limit cycles for a class of Abel equations,, SIAM J. Math. Anal., 21 (1990), 1235. doi: 10.1137/0521068.

[12]

T. Harko and M. K. Mak, Relativistic dissipative cosmological models and Abel differential equation,, Comput. Math. Appl., 46 (2003), 849. doi: 10.1016/S0898-1221(03)90147-7.

[13]

E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen. I: Gewöhnliche Differentialgleichungen,, Neunte Auflage, (1977).

[14]

A. Lins Neto, On the number of solutions of the equation $\frac{d x}{dt}=\sum_{j=0}^n a_j(t)x^j$, $0\leq t\leq 1$, for which $x(0)=x(1)$,, Inv. Math., 59 (1980), 67. doi: 10.1007/BF01390315.

[15]

N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems,, J. London Math. Soc., 20 (1979), 277. doi: 10.1112/jlms/s2-20.2.277.

[16]

J. M. Olm and X. Ros-Oton, Existence of periodic solutions with nonconstant sign in a class of generalized Abel equations,, Discrete Contin. Dyn. Syst., 33 (2013), 1603. doi: 10.3934/dcds.2013.33.1603.

[17]

J. M. Olm, X. Ros-Oton and T. M. Seara, Periodic solutions with non-constant sign in Abel equations of the second kind,, J. Math. Anal. Appl., 381 (2011), 582. doi: 10.1016/j.jmaa.2011.02.084.

[18]

D. E. Panayotounakos and T. I. Zarmpoutis, Construction of Exact Parametric or Closed Form Solutions of Some Unsolvable Classes of Nonlinear ODEs (Abel's Nonlinear ODEs of the First Kind and Relative Degenerate Equations),, Int. J. Math. Math. Sci., 2011 (2011). doi: 10.1155/2011/387429.

[19]

A. A. Panov, The number of periodic solutions of polynomial differential equations,, Math. Notes, 64 (1998), 622. doi: 10.1007/BF02316287.

[20]

L. M. Perko, Differential Equations and Dynamical Systems,, Third edition, (2001). doi: 10.1007/978-1-4613-0003-8.

[21]

V. A. Pliss, Non-Local Problems of the Theory of Oscillations,, Academic Press, (1966).

[22]

J. Sotomayor, Curvas Definidas Por Equações Diferenciais no Plano,, IMPA, (1981).

show all references

References:
[1]

M. J. Álvarez, A. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations,, J. Differential Equations, 234 (2007), 161. doi: 10.1016/j.jde.2006.11.004.

[2]

M. A. M. Alwash and N. G. Lloyd, Nonautonomous equations related to polynomial two dimensional systems,, Proc. Roy. Soc. Edinburgh Sect. A 105 (1987), 105 (1987), 129. doi: 10.1017/S0308210500021971.

[3]

A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems,, Halsted Press (A division of John Wiley & Sons), (1973).

[4]

D. M. Benardete, V. W. Noonburg and B. Pollina, Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation,, Amer. Math. Monthly, 115 (2008), 202.

[5]

J. L. Bravo, M. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs,, Int. J. Bif. Chaos, 19 (2009), 3869. doi: 10.1142/S0218127409025195.

[6]

J. L. Bravo and J. Torregrosa, Abel-like equations with no periodic solutions,, J. Math. Anal. Appl., 342 (2008), 931. doi: 10.1016/j.jmaa.2007.12.060.

[7]

L. A. Cherkas, Number of limit cycles of an autonomous second-order system,, Diff. Eq., 12 (1976), 944.

[8]

G. F. D. Duff, Limit-cycles and rotated vector fields,, Ann. of Math., 57 (1953), 15. doi: 10.2307/1969724.

[9]

E. Fossas, J. M. Olm and H. Sira-Ramírez, Iterative approximation of limit cycles for a class of Abel equations,, Phys. D, 237 (2008), 3159. doi: 10.1016/j.physd.2008.05.011.

[10]

A. Gasull and A. Guillamon, Limit cycles for generalized Abel equations,, Int. J. Bif. Chaos, 16 (2006), 3737. doi: 10.1142/S0218127406017130.

[11]

A. Gasull and J. Llibre, Limit cycles for a class of Abel equations,, SIAM J. Math. Anal., 21 (1990), 1235. doi: 10.1137/0521068.

[12]

T. Harko and M. K. Mak, Relativistic dissipative cosmological models and Abel differential equation,, Comput. Math. Appl., 46 (2003), 849. doi: 10.1016/S0898-1221(03)90147-7.

[13]

E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen. I: Gewöhnliche Differentialgleichungen,, Neunte Auflage, (1977).

[14]

A. Lins Neto, On the number of solutions of the equation $\frac{d x}{dt}=\sum_{j=0}^n a_j(t)x^j$, $0\leq t\leq 1$, for which $x(0)=x(1)$,, Inv. Math., 59 (1980), 67. doi: 10.1007/BF01390315.

[15]

N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems,, J. London Math. Soc., 20 (1979), 277. doi: 10.1112/jlms/s2-20.2.277.

[16]

J. M. Olm and X. Ros-Oton, Existence of periodic solutions with nonconstant sign in a class of generalized Abel equations,, Discrete Contin. Dyn. Syst., 33 (2013), 1603. doi: 10.3934/dcds.2013.33.1603.

[17]

J. M. Olm, X. Ros-Oton and T. M. Seara, Periodic solutions with non-constant sign in Abel equations of the second kind,, J. Math. Anal. Appl., 381 (2011), 582. doi: 10.1016/j.jmaa.2011.02.084.

[18]

D. E. Panayotounakos and T. I. Zarmpoutis, Construction of Exact Parametric or Closed Form Solutions of Some Unsolvable Classes of Nonlinear ODEs (Abel's Nonlinear ODEs of the First Kind and Relative Degenerate Equations),, Int. J. Math. Math. Sci., 2011 (2011). doi: 10.1155/2011/387429.

[19]

A. A. Panov, The number of periodic solutions of polynomial differential equations,, Math. Notes, 64 (1998), 622. doi: 10.1007/BF02316287.

[20]

L. M. Perko, Differential Equations and Dynamical Systems,, Third edition, (2001). doi: 10.1007/978-1-4613-0003-8.

[21]

V. A. Pliss, Non-Local Problems of the Theory of Oscillations,, Academic Press, (1966).

[22]

J. Sotomayor, Curvas Definidas Por Equações Diferenciais no Plano,, IMPA, (1981).

[1]

T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure & Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277

[2]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[3]

Yu-Hsien Chang, Guo-Chin Jau. The behavior of the solution for a mathematical model for analysis of the cell cycle. Communications on Pure & Applied Analysis, 2006, 5 (4) : 779-792. doi: 10.3934/cpaa.2006.5.779

[4]

Amelia Álvarez, José-Luis Bravo, Manuel Fernández. The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1493-1501. doi: 10.3934/cpaa.2009.8.1493

[5]

Jacinto Marabel Romo. A closed-form solution for outperformance options with stochastic correlation and stochastic volatility. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1185-1209. doi: 10.3934/jimo.2015.11.1185

[6]

Yueling Jia, Zhaohui Huo. Inviscid limit behavior of solution for the multi-dimensional derivative complex Ginzburg-Landau equation. Kinetic & Related Models, 2014, 7 (1) : 57-77. doi: 10.3934/krm.2014.7.57

[7]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[8]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[9]

Brian D. O. Anderson, Shaoshuai Mou, A. Stephen Morse, Uwe Helmke. Decentralized gradient algorithm for solution of a linear equation. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 319-328. doi: 10.3934/naco.2016014

[10]

Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401

[11]

Tianliang Yang, J. M. McDonough. Solution filtering technique for solving Burgers' equation. Conference Publications, 2003, 2003 (Special) : 951-959. doi: 10.3934/proc.2003.2003.951

[12]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[13]

Ellen Baake, Michael Baake, Majid Salamat. The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 63-95. doi: 10.3934/dcds.2016.36.63

[14]

Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789

[15]

Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365

[16]

Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121

[17]

Claudianor O. Alves. Existence of periodic solution for a class of systems involving nonlinear wave equations. Communications on Pure & Applied Analysis, 2005, 4 (3) : 487-498. doi: 10.3934/cpaa.2005.4.487

[18]

Jingli Ren, Zhibo Cheng, Stefan Siegmund. Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 385-392. doi: 10.3934/dcdsb.2011.16.385

[19]

Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129

[20]

Ellen Baake, Michael Baake, Majid Salamat. Erratum and addendum to: The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2365-2366. doi: 10.3934/dcds.2016.36.2365

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (1)

[Back to Top]