2014, 34(12): 5271-5298. doi: 10.3934/dcds.2014.34.5271

The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion

1. 

Center for PDE, East China Normal University, Shanghai, 200241, China

2. 

College of Mathematical Sciences, Capital Normal University, Beijing 100048, China

3. 

Department of Basic Courses, Beijing Union University, Beijing 100101, China

Received  July 2013 Revised  April 2014 Published  June 2014

This paper concerns with the existence and stability properties of non-constant positive steady states in one dimensional space for the following competition system with cross diffusion $$\left\{ \begin{array}{ll} u_t=[(d_{1}+\rho_{12}v)u]_{xx}+u(a_{1}-b_{1}u-c_{1}v),&x\in(0,1), t>0, \\ v_t= d_{2}v_{xx}+v(a_{2}-b_{2}u-c_{2}v),& x\in(0,1),t>0,                    (1) \\ u_{x}=v_{x}=0, &x=0,1, t>0. \end{array}\right. $$ First, by Lyapunov-Schmidt method, we obtain the existence and the detailed structure of a type of small nontrivial positive steady states to the shadow system of (1) as $\rho_{12}\to \infty$ and when $d_2$ is near $a_2/\pi^2$, which also verifies some related existence results obtained earlier in [11] by a different method. Then, based on the detailed structure of the steady states, we further establish the stability of the small nontrivial positive steady states for the shadow system by spectral analysis. Finally, we prove the existence and stability of the corresponding nontrivial positive steady states for the original cross diffusion system (1) when $\rho_{12}$ is large enough and $d_2$ is near $a_2/\pi^2$.
Citation: Wei-Ming Ni, Yaping Wu, Qian Xu. The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5271-5298. doi: 10.3934/dcds.2014.34.5271
References:
[1]

Y. S. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross diffusion,, Discrete Contin. Dyn. Syst., 10 (2004), 719. doi: 10.3934/dcds.2004.10.719.

[2]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981).

[3]

M. Iida, M. Mimura and H. Ninomiya, Diffusion, cross diffusion and competitive interaction,, J. Math. Biol., 53 (2006), 617. doi: 10.1007/s00285-006-0013-2.

[4]

H. Kuiper and L. Dung, Global attractors for cross diffusion systems on domains of arbitrary dimension,, Rocky Mountain J. Math., 37 (2007), 1645. doi: 10.1216/rmjm/1194275939.

[5]

Y. Kan-on, Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics,, Hiroshima Math. J., 23 (1993), 509.

[6]

H. Kielhofer, Bifurcation Theory: An Introduction with Applications to PDEs,, Applied Math. Sci. Vol. 156, (2004). doi: 10.1007/b97365.

[7]

K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains,, J. Differential Equations, 58 (1985), 15. doi: 10.1016/0022-0396(85)90020-8.

[8]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross diffusion,, J. Differential Equations, 131 (1996), 79. doi: 10.1006/jdeq.1996.0157.

[9]

Y. Lou and W. M. Ni, Diffusion vs cross diffusion: An elliptic approach,, J. Differential Equations, 154 (1999), 157. doi: 10.1006/jdeq.1998.3559.

[10]

Y. Lou, W. M. Ni and Y. Wu, On the global existence of a cross diffusion system,, Discrete and Continuous Dynamical Systems, 4 (1998), 193.

[11]

Y. Lou, W. M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross diffusion,, Discrete Contin. Dyn. Syst., 10 (2004), 435.

[12]

H. Matano and M. Mimura, Pattern formation in competition-diffusion systems in nonconvex domains,, Publ. RIMS. Kyoto Univ., 19 (1983), 1049.

[13]

M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics,, Hiroshima Math. J., 11 (1981), 621.

[14]

M. Mimura, Y. Nishiura, A. Tesei and T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion,, Hiroshima Math. J., 14 (1984), 425.

[15]

W. M. Ni, Qualitative properties of solutions to elliptic problems,, Stationary Partial Differential Equations, 1 (2004), 157. doi: 10.1016/S1874-5733(04)80005-6.

[16]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83. doi: 10.1016/0022-5193(79)90258-3.

[17]

Y. Wu, Existence of stationary solutions with transition layers for a class of cross diffusion systems,, Proc. of Royal Soc. Edinburg, 132 (2002), 1493.

[18]

Y. Wu, The instability of spiky steady states for a competing species model with cross diffusion,, J. Differential Equations, 213 (2005), 289. doi: 10.1016/j.jde.2004.08.015.

[19]

Y. Wu and Q. Xu, The Existence and structure of large spiky steady states for S-K-T competition system with cross diffusion,, Discrete Contin. Dyn. Syst., 29 (2011), 367. doi: 10.3934/dcds.2011.29.367.

[20]

Y. Wu and Y. Zhao, The existence and stability of traveling waves with transition layers for the S-K-T competition model with cross diffusion,, Science China, 53 (2010), 1161. doi: 10.1007/s11425-010-0141-4.

[21]

Y. Yamada, Positive solutions for Lotka-Volterra systems with cross diffusion,, Stationary Partial Differential Equations, VI (2008), 411. doi: 10.1016/S1874-5733(08)80023-X.

[22]

Y. Yamada, Global solutions for the Shigesada-Kawasaki-Teramoto model with cross diffusion,, Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, (2009), 282. doi: 10.1142/9789812834744_0013.

show all references

References:
[1]

Y. S. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross diffusion,, Discrete Contin. Dyn. Syst., 10 (2004), 719. doi: 10.3934/dcds.2004.10.719.

[2]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981).

[3]

M. Iida, M. Mimura and H. Ninomiya, Diffusion, cross diffusion and competitive interaction,, J. Math. Biol., 53 (2006), 617. doi: 10.1007/s00285-006-0013-2.

[4]

H. Kuiper and L. Dung, Global attractors for cross diffusion systems on domains of arbitrary dimension,, Rocky Mountain J. Math., 37 (2007), 1645. doi: 10.1216/rmjm/1194275939.

[5]

Y. Kan-on, Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics,, Hiroshima Math. J., 23 (1993), 509.

[6]

H. Kielhofer, Bifurcation Theory: An Introduction with Applications to PDEs,, Applied Math. Sci. Vol. 156, (2004). doi: 10.1007/b97365.

[7]

K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains,, J. Differential Equations, 58 (1985), 15. doi: 10.1016/0022-0396(85)90020-8.

[8]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross diffusion,, J. Differential Equations, 131 (1996), 79. doi: 10.1006/jdeq.1996.0157.

[9]

Y. Lou and W. M. Ni, Diffusion vs cross diffusion: An elliptic approach,, J. Differential Equations, 154 (1999), 157. doi: 10.1006/jdeq.1998.3559.

[10]

Y. Lou, W. M. Ni and Y. Wu, On the global existence of a cross diffusion system,, Discrete and Continuous Dynamical Systems, 4 (1998), 193.

[11]

Y. Lou, W. M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross diffusion,, Discrete Contin. Dyn. Syst., 10 (2004), 435.

[12]

H. Matano and M. Mimura, Pattern formation in competition-diffusion systems in nonconvex domains,, Publ. RIMS. Kyoto Univ., 19 (1983), 1049.

[13]

M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics,, Hiroshima Math. J., 11 (1981), 621.

[14]

M. Mimura, Y. Nishiura, A. Tesei and T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion,, Hiroshima Math. J., 14 (1984), 425.

[15]

W. M. Ni, Qualitative properties of solutions to elliptic problems,, Stationary Partial Differential Equations, 1 (2004), 157. doi: 10.1016/S1874-5733(04)80005-6.

[16]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83. doi: 10.1016/0022-5193(79)90258-3.

[17]

Y. Wu, Existence of stationary solutions with transition layers for a class of cross diffusion systems,, Proc. of Royal Soc. Edinburg, 132 (2002), 1493.

[18]

Y. Wu, The instability of spiky steady states for a competing species model with cross diffusion,, J. Differential Equations, 213 (2005), 289. doi: 10.1016/j.jde.2004.08.015.

[19]

Y. Wu and Q. Xu, The Existence and structure of large spiky steady states for S-K-T competition system with cross diffusion,, Discrete Contin. Dyn. Syst., 29 (2011), 367. doi: 10.3934/dcds.2011.29.367.

[20]

Y. Wu and Y. Zhao, The existence and stability of traveling waves with transition layers for the S-K-T competition model with cross diffusion,, Science China, 53 (2010), 1161. doi: 10.1007/s11425-010-0141-4.

[21]

Y. Yamada, Positive solutions for Lotka-Volterra systems with cross diffusion,, Stationary Partial Differential Equations, VI (2008), 411. doi: 10.1016/S1874-5733(08)80023-X.

[22]

Y. Yamada, Global solutions for the Shigesada-Kawasaki-Teramoto model with cross diffusion,, Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, (2009), 282. doi: 10.1142/9789812834744_0013.

[1]

Yaping Wu, Qian Xu. The existence and structure of large spiky steady states for S-K-T competition systems with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 367-385. doi: 10.3934/dcds.2011.29.367

[2]

Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 613-633. doi: 10.3934/dcds.2014.34.613

[3]

Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597

[4]

Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193

[5]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[6]

Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2941-2961. doi: 10.3934/dcdsb.2014.19.2941

[7]

Bo Li, Xiaoyan Zhang. Steady states of a Sel'kov-Schnakenberg reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1009-1023. doi: 10.3934/dcdss.2017053

[8]

Yi Li, Chunshan Zhao. Global existence of solutions to a cross-diffusion system in higher dimensional domains. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 185-192. doi: 10.3934/dcds.2005.12.185

[9]

Anotida Madzvamuse, Hussaini Ndakwo, Raquel Barreira. Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2133-2170. doi: 10.3934/dcds.2016.36.2133

[10]

Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536

[11]

Kimun Ryu, Inkyung Ahn. Positive steady--states for two interacting species models with linear self-cross diffusions. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1049-1061. doi: 10.3934/dcds.2003.9.1049

[12]

Yunfeng Jia, Yi Li, Jianhua Wu. Qualitative analysis on positive steady-states for an autocatalytic reaction model in thermodynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4785-4813. doi: 10.3934/dcds.2017206

[13]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[14]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[15]

Anton Arnold, Laurent Desvillettes, Céline Prévost. Existence of nontrivial steady states for populations structured with respect to space and a continuous trait. Communications on Pure & Applied Analysis, 2012, 11 (1) : 83-96. doi: 10.3934/cpaa.2012.11.83

[16]

Dagny Butler, Eunkyung Ko, R. Shivaji. Alternate steady states for classes of reaction diffusion models on exterior domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1181-1191. doi: 10.3934/dcdss.2014.7.1181

[17]

Qian Xu. The stability of bifurcating steady states of several classes of chemotaxis systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 231-248. doi: 10.3934/dcdsb.2015.20.231

[18]

Inom Mirzaev, David M. Bortz. A numerical framework for computing steady states of structured population models and their stability. Mathematical Biosciences & Engineering, 2017, 14 (4) : 933-952. doi: 10.3934/mbe.2017049

[19]

Yongli Cai, Yun Kang, Weiming Wang. Global stability of the steady states of an epidemic model incorporating intervention strategies. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1071-1089. doi: 10.3934/mbe.2017056

[20]

Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 849-865. doi: 10.3934/dcdsb.2011.15.849

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]