2014, 34(12): 5247-5269. doi: 10.3934/dcds.2014.34.5247

Stochastic adding machine and $2$-dimensional Julia sets

1. 

UNESP - Departamento de Matemática do, Instituto de Biociências, Letras e Ciências, Exatas de São José do Rio Preto, Brazil

2. 

Université de Picardie Jules Verne, Laboratoire Amiénois de Mathématiques Fondamentales et Appliquées, CNRS - UMR 7352, France

Received  June 2013 Revised  March 2014 Published  June 2014

In this work we define a stochastic adding machine associated to a quadratic base $(F_n)_{n \geq 0}$ formed by recurrent sequences of order 2. We obtain a Markov chain with states in $\mathbb{Z}^+$ and we prove that the spectrum of the transition operator associated to this Markov chain is connected to the filled Julia sets for a class of endomorphisms in $\mathbb{C}^2$ of which we study topological properties.
Citation: Ali Messaoudi, Rafael Asmat Uceda. Stochastic adding machine and $2$-dimensional Julia sets. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5247-5269. doi: 10.3934/dcds.2014.34.5247
References:
[1]

E. H. El Abdalaoui and A. Messaoudi, On the spectrum of stochastic perturbations of the shift map and Julia sets,, Fundamenta Mathematicae, 218 (2012), 47. doi: 10.4064/fm218-1-3.

[2]

El Abdalaoui, S. Bonnot, A. Messaoudi and O. Sester, On the Fibonacci Complex Dynamical Systems,, , (2013).

[3]

E. Bedford and J. Smillie, John Polynomial diffeomorphisms of $\mathbbC^2$ VI. Connectivity of J,, Ann. of Math. (2), 148 (1998), 695. doi: 10.2307/121006.

[4]

R. L. Devaney, An Introduction to Chaothic Dynamical Systems,, ABP, (2003).

[5]

S. Eilenberg, Automata, Languages, and Machines,, Volume 1, (1974).

[6]

J. E. Fornaess and N. Sibony, Fatou and Julia sets for entire mappings in $\mathbbC^k$,, Math. Ann., 311 (1998), 27. doi: 10.1007/s002080050174.

[7]

A. S. Fraenkel, Systems of numeration,, Amer. Math. Monthly, 92 (1985), 105. doi: 10.2307/2322638.

[8]

C. Frougny, Representation of numbers and finite automata,, Math. Systems Theory, 25 (1992), 37. doi: 10.1007/BF01368783.

[9]

P. R. Killeen and T. J. Taylor, A stochastic adding machine and complex dynamics,, Nonlinearity, 13 (2000), 1889. doi: 10.1088/0951-7715/13/6/302.

[10]

S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, Holomorphic Dynamics,, Cambridge University Press, (2000).

[11]

J. Milnor, Dynamics in One Complex Variable,, Princeton University Press, (2006).

[12]

A. Messaoudi and D. Smania, Eigenvalues of Fibonacci stochastic adding machine,, Stoch. Dyn., 10 (2010), 291. doi: 10.1142/S0219493710002966.

[13]

A. Messaoudi, O. Sester and G. Valle, Spectrum of stochastic adding machine and fibred Julia sets,, Stochastic and Dynamics, 13 (2013). doi: 10.1142/S0219493712500219.

[14]

R. A. Uceda, Máquina de Somar, Conjuntos de Julia e Fractais de Rauzy,, PhD Thesis, (2011).

[15]

K. Yoshida, Functional Analysis,, Springer Verlag, (1980).

show all references

References:
[1]

E. H. El Abdalaoui and A. Messaoudi, On the spectrum of stochastic perturbations of the shift map and Julia sets,, Fundamenta Mathematicae, 218 (2012), 47. doi: 10.4064/fm218-1-3.

[2]

El Abdalaoui, S. Bonnot, A. Messaoudi and O. Sester, On the Fibonacci Complex Dynamical Systems,, , (2013).

[3]

E. Bedford and J. Smillie, John Polynomial diffeomorphisms of $\mathbbC^2$ VI. Connectivity of J,, Ann. of Math. (2), 148 (1998), 695. doi: 10.2307/121006.

[4]

R. L. Devaney, An Introduction to Chaothic Dynamical Systems,, ABP, (2003).

[5]

S. Eilenberg, Automata, Languages, and Machines,, Volume 1, (1974).

[6]

J. E. Fornaess and N. Sibony, Fatou and Julia sets for entire mappings in $\mathbbC^k$,, Math. Ann., 311 (1998), 27. doi: 10.1007/s002080050174.

[7]

A. S. Fraenkel, Systems of numeration,, Amer. Math. Monthly, 92 (1985), 105. doi: 10.2307/2322638.

[8]

C. Frougny, Representation of numbers and finite automata,, Math. Systems Theory, 25 (1992), 37. doi: 10.1007/BF01368783.

[9]

P. R. Killeen and T. J. Taylor, A stochastic adding machine and complex dynamics,, Nonlinearity, 13 (2000), 1889. doi: 10.1088/0951-7715/13/6/302.

[10]

S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, Holomorphic Dynamics,, Cambridge University Press, (2000).

[11]

J. Milnor, Dynamics in One Complex Variable,, Princeton University Press, (2006).

[12]

A. Messaoudi and D. Smania, Eigenvalues of Fibonacci stochastic adding machine,, Stoch. Dyn., 10 (2010), 291. doi: 10.1142/S0219493710002966.

[13]

A. Messaoudi, O. Sester and G. Valle, Spectrum of stochastic adding machine and fibred Julia sets,, Stochastic and Dynamics, 13 (2013). doi: 10.1142/S0219493712500219.

[14]

R. A. Uceda, Máquina de Somar, Conjuntos de Julia e Fractais de Rauzy,, PhD Thesis, (2011).

[15]

K. Yoshida, Functional Analysis,, Springer Verlag, (1980).

[1]

Danilo Antonio Caprio. A class of adding machines and Julia sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5951-5970. doi: 10.3934/dcds.2016061

[2]

Felix X.-F. Ye, Yue Wang, Hong Qian. Stochastic dynamics: Markov chains and random transformations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2337-2361. doi: 10.3934/dcdsb.2016050

[3]

Lori Alvin. Toeplitz kneading sequences and adding machines. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3277-3287. doi: 10.3934/dcds.2013.33.3277

[4]

Demetris Hadjiloucas. Stochastic matrix-valued cocycles and non-homogeneous Markov chains. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 731-738. doi: 10.3934/dcds.2007.17.731

[5]

Mrinal Kanti Roychowdhury, Daniel J. Rudolph. Nearly continuous Kakutani equivalence of adding machines. Journal of Modern Dynamics, 2009, 3 (1) : 103-119. doi: 10.3934/jmd.2009.3.103

[6]

Koh Katagata. Quartic Julia sets including any two copies of quadratic Julia sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2103-2112. doi: 10.3934/dcds.2016.36.2103

[7]

Luiz Henrique de Figueiredo, Diego Nehab, Jorge Stolfi, João Batista S. de Oliveira. Rigorous bounds for polynomial Julia sets. Journal of Computational Dynamics, 2016, 3 (2) : 113-137. doi: 10.3934/jcd.2016006

[8]

Robert L. Devaney, Daniel M. Look. Buried Sierpinski curve Julia sets. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1035-1046. doi: 10.3934/dcds.2005.13.1035

[9]

Nathaniel D. Emerson. Dynamics of polynomials with disconnected Julia sets. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 801-834. doi: 10.3934/dcds.2003.9.801

[10]

Ronald A. Knight. Compact minimal sets in continuous recurrent flows. Conference Publications, 1998, 1998 (Special) : 397-407. doi: 10.3934/proc.1998.1998.397

[11]

Marian Gidea, Clark Robinson. Obstruction argument for transition chains of tori interspersed with gaps. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 393-416. doi: 10.3934/dcdss.2009.2.393

[12]

Yakov Pesin. On the work of Sarig on countable Markov chains and thermodynamic formalism. Journal of Modern Dynamics, 2014, 8 (1) : 1-14. doi: 10.3934/jmd.2014.8.1

[13]

Tien-Cuong Dinh, Nessim Sibony. Rigidity of Julia sets for Hénon type maps. Journal of Modern Dynamics, 2014, 8 (3&4) : 499-548. doi: 10.3934/jmd.2014.8.499

[14]

Tarik Aougab, Stella Chuyue Dong, Robert S. Strichartz. Laplacians on a family of quadratic Julia sets II. Communications on Pure & Applied Analysis, 2013, 12 (1) : 1-58. doi: 10.3934/cpaa.2013.12.1

[15]

Krzysztof Barański, Michał Wardal. On the Hausdorff dimension of the Sierpiński Julia sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3293-3313. doi: 10.3934/dcds.2015.35.3293

[16]

Ranjit Bhattacharjee, Robert L. Devaney, R.E. Lee Deville, Krešimir Josić, Monica Moreno-Rocha. Accessible points in the Julia sets of stable exponentials. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 299-318. doi: 10.3934/dcdsb.2001.1.299

[17]

B. Fernandez, E. Ugalde, J. Urías. Spectrum of dimensions for Poincaré recurrences of Markov maps. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 835-849. doi: 10.3934/dcds.2002.8.835

[18]

Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541

[19]

Dong Han Kim, Bing Li. Zero-one law of Hausdorff dimensions of the recurrent sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5477-5492. doi: 10.3934/dcds.2016041

[20]

Karoline Disser, Matthias Liero. On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks & Heterogeneous Media, 2015, 10 (2) : 233-253. doi: 10.3934/nhm.2015.10.233

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]