• Previous Article
    Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations
  • DCDS Home
  • This Issue
  • Next Article
    On ill-posedness for the generalized BBM equation
November  2014, 34(11): 4577-4588. doi: 10.3934/dcds.2014.34.4577

Delay-dependent stability criteria for neutral delay differential and difference equations

1. 

Institute of Mathematics, Brno University of Technology, Technická 2, CZ-61669 Brno, Czech Republic, Czech Republic

Received  October 2013 Revised  January 2014 Published  May 2014

This paper discusses asymptotic stability properties of the neutral delay differential equation \begin{eqnarray*} y'(t) = a y (t) + b y ( t - \tau ) + c y'( t - \tau ),       t > 0, \\ \end{eqnarray*} where $a,\,b,\,c$ and $\tau >0$ are real scalars. We consider the exact as well as discretized delay-dependent asymptotic stability regions for this equation and describe them in terms of explicit necessary and sufficient conditions imposed on $a,\,b,\,c$ and $\tau$. Such descriptions enable us to observe some fundamental properties of these stability regions, especially with respect to stability of corresponding numerical formulae. As a consequence of our investigations, we extend existing results on this topic.
Citation: Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577
References:
[1]

A. Bellen, N. Guglielmi and L. Torelli, Asymptotic stability properties of $\Theta$-methods for the pantograph equation,, Appl. Numer. Math., 24 (1997), 279. doi: 10.1016/S0168-9274(97)00026-3. Google Scholar

[2]

A. Bellen, Z. Jackiewicz and M. Zennaro, Stability analysis of one-step methods for neutral delay-differential equations,, Numer. Math., 52 (1988), 605. doi: 10.1007/BF01395814. Google Scholar

[3]

A. Bellen and M. Zennaro, Numerical Methods For Delay Differential Equations,, Oxford University Press, (2003). doi: 10.1093/acprof:oso/9780198506546.001.0001. Google Scholar

[4]

W. E. Brumley, On the asymptotic behavior of solutions of differential-difference equations of neutral type,, J. Differential Equations, 7 (1970), 175. doi: 10.1016/0022-0396(70)90131-2. Google Scholar

[5]

M. Calvo and T. Grande, On the asymptotic stability of $\Theta$-methods for delay differential equations,, Numer. Math., 54 (1988), 257. doi: 10.1007/BF01396761. Google Scholar

[6]

J. Čermák, The stability and asymptotic properties of the $\Theta$-methods for the pantograph equation,, IMA J. Numer. Anal., 31 (2011), 1533. doi: 10.1093/imanum/drq021. Google Scholar

[7]

J. Čermák and J. Hrabalová, On stability regions for some delay differential equations and their discretizations,, Period. Math. Hung., (). Google Scholar

[8]

J. Čermák, J. Jánský and P. Kundrát, On necessary and sufficient conditions for the asymptotic stability of higher order linear difference equations,, J. Difference Equ. Appl., 18 (2012), 1781. doi: 10.1080/10236198.2011.595406. Google Scholar

[9]

S. Elaydi, An Introduction to Difference Equations,, Springer, (2005). Google Scholar

[10]

H. I. Freedman and Y. Kuang, Stability switches in linear scalar neutral delay equations,, Funkcial. Ekvac., 34 (1991), 187. Google Scholar

[11]

P. S. Gromova, Stability of solutions of nonlinear equations of the neutral type in the asymptotically critical case,, Math. Notes, 1 (1967), 715. Google Scholar

[12]

N. Guglielmi, Delay dependent stability regions of $\Theta$-methods for delay differential equations,, IMA J. Numer. Anal., 18 (1998), 399. doi: 10.1093/imanum/18.3.399. Google Scholar

[13]

N. Guglielmi, Asymptotic stability barriers for natural Runge-Kutta processes for delay equations,, SIAM J. Numer. Anal., 39 (2001), 763. doi: 10.1137/S0036142900375396. Google Scholar

[14]

N. Guglielmi, On the qualitative behaviour of numerical methods for delay differential equations of neutral type. A case study: $\Theta$-methods,, Recent Trends in Numerical Analysis (L. Brugnano and D. Trigiante, 3 (2001), 175. Google Scholar

[15]

N. D. Hayes, Roots of the transcendental equations associated with certain difference-differential equations,, J. London Math. Soc., 25 (1950), 226. Google Scholar

[16]

C. Huang, Delay-dependent stability of high order Runge-Kutta methods,, Numer. Math., 111 (2009), 377. doi: 10.1007/s00211-008-0197-z. Google Scholar

[17]

A. Iserles, Exact and discretized stability of the pantograph equation,, Appl. Numer. Math., 24 (1997), 295. doi: 10.1016/S0168-9274(97)00027-5. Google Scholar

[18]

Z. Jackiewicz, Asymptotic stability analysis of $\Theta$-methods for functional differential equations,, Numer. Math., 43 (1984), 389. doi: 10.1007/BF01390181. Google Scholar

[19]

S. Junca and B. Lombard, Stability of a critical nonlinear neutral delay differential equation,, J. Differential Equations, 256 (2014), 2368. doi: 10.1016/j.jde.2014.01.004. Google Scholar

[20]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations,, Kluwer Academic Publishers, (1999). doi: 10.1007/978-94-017-1965-0. Google Scholar

[21]

J. Kuang and Y. Cong, Stability of Numerical Methods for Delay Differential Equations,, Science Press, (2005). Google Scholar

[22]

Y. Liu, On the $\Theta$-method for delay differential equations with infinite lag,, J. Comput. Appl. Math., 71 (1996), 177. doi: 10.1016/0377-0427(95)00222-7. Google Scholar

[23]

H. Matsunaga, Stability switches in a system of linear differential equations with diagonal delay,, Appl. Math. Comput., 212 (2009), 145. doi: 10.1016/j.amc.2009.02.010. Google Scholar

[24]

H. Matsunaga and H. Hashimoto, Asymptotic stability and stability switches in a linear integro-differential system,, Differ. Equ. Appl., 3 (2011), 43. doi: 10.7153/dea-03-04. Google Scholar

[25]

W. Snow, Existence, Uniqueness and Stability for Nonlinear Differential-Difference Equations in the Neutral Case,, Thesis (Ph.D.)–New York University. 1964. 79 pp., (1964). Google Scholar

[26]

V. V. Vlasov and D. A. Medvedev, Functional-differential equations and related problems in spectral theory,, J. Math. Sci. (N. Y.), 164 (2010), 659. doi: 10.1007/s10958-010-9768-5. Google Scholar

show all references

References:
[1]

A. Bellen, N. Guglielmi and L. Torelli, Asymptotic stability properties of $\Theta$-methods for the pantograph equation,, Appl. Numer. Math., 24 (1997), 279. doi: 10.1016/S0168-9274(97)00026-3. Google Scholar

[2]

A. Bellen, Z. Jackiewicz and M. Zennaro, Stability analysis of one-step methods for neutral delay-differential equations,, Numer. Math., 52 (1988), 605. doi: 10.1007/BF01395814. Google Scholar

[3]

A. Bellen and M. Zennaro, Numerical Methods For Delay Differential Equations,, Oxford University Press, (2003). doi: 10.1093/acprof:oso/9780198506546.001.0001. Google Scholar

[4]

W. E. Brumley, On the asymptotic behavior of solutions of differential-difference equations of neutral type,, J. Differential Equations, 7 (1970), 175. doi: 10.1016/0022-0396(70)90131-2. Google Scholar

[5]

M. Calvo and T. Grande, On the asymptotic stability of $\Theta$-methods for delay differential equations,, Numer. Math., 54 (1988), 257. doi: 10.1007/BF01396761. Google Scholar

[6]

J. Čermák, The stability and asymptotic properties of the $\Theta$-methods for the pantograph equation,, IMA J. Numer. Anal., 31 (2011), 1533. doi: 10.1093/imanum/drq021. Google Scholar

[7]

J. Čermák and J. Hrabalová, On stability regions for some delay differential equations and their discretizations,, Period. Math. Hung., (). Google Scholar

[8]

J. Čermák, J. Jánský and P. Kundrát, On necessary and sufficient conditions for the asymptotic stability of higher order linear difference equations,, J. Difference Equ. Appl., 18 (2012), 1781. doi: 10.1080/10236198.2011.595406. Google Scholar

[9]

S. Elaydi, An Introduction to Difference Equations,, Springer, (2005). Google Scholar

[10]

H. I. Freedman and Y. Kuang, Stability switches in linear scalar neutral delay equations,, Funkcial. Ekvac., 34 (1991), 187. Google Scholar

[11]

P. S. Gromova, Stability of solutions of nonlinear equations of the neutral type in the asymptotically critical case,, Math. Notes, 1 (1967), 715. Google Scholar

[12]

N. Guglielmi, Delay dependent stability regions of $\Theta$-methods for delay differential equations,, IMA J. Numer. Anal., 18 (1998), 399. doi: 10.1093/imanum/18.3.399. Google Scholar

[13]

N. Guglielmi, Asymptotic stability barriers for natural Runge-Kutta processes for delay equations,, SIAM J. Numer. Anal., 39 (2001), 763. doi: 10.1137/S0036142900375396. Google Scholar

[14]

N. Guglielmi, On the qualitative behaviour of numerical methods for delay differential equations of neutral type. A case study: $\Theta$-methods,, Recent Trends in Numerical Analysis (L. Brugnano and D. Trigiante, 3 (2001), 175. Google Scholar

[15]

N. D. Hayes, Roots of the transcendental equations associated with certain difference-differential equations,, J. London Math. Soc., 25 (1950), 226. Google Scholar

[16]

C. Huang, Delay-dependent stability of high order Runge-Kutta methods,, Numer. Math., 111 (2009), 377. doi: 10.1007/s00211-008-0197-z. Google Scholar

[17]

A. Iserles, Exact and discretized stability of the pantograph equation,, Appl. Numer. Math., 24 (1997), 295. doi: 10.1016/S0168-9274(97)00027-5. Google Scholar

[18]

Z. Jackiewicz, Asymptotic stability analysis of $\Theta$-methods for functional differential equations,, Numer. Math., 43 (1984), 389. doi: 10.1007/BF01390181. Google Scholar

[19]

S. Junca and B. Lombard, Stability of a critical nonlinear neutral delay differential equation,, J. Differential Equations, 256 (2014), 2368. doi: 10.1016/j.jde.2014.01.004. Google Scholar

[20]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations,, Kluwer Academic Publishers, (1999). doi: 10.1007/978-94-017-1965-0. Google Scholar

[21]

J. Kuang and Y. Cong, Stability of Numerical Methods for Delay Differential Equations,, Science Press, (2005). Google Scholar

[22]

Y. Liu, On the $\Theta$-method for delay differential equations with infinite lag,, J. Comput. Appl. Math., 71 (1996), 177. doi: 10.1016/0377-0427(95)00222-7. Google Scholar

[23]

H. Matsunaga, Stability switches in a system of linear differential equations with diagonal delay,, Appl. Math. Comput., 212 (2009), 145. doi: 10.1016/j.amc.2009.02.010. Google Scholar

[24]

H. Matsunaga and H. Hashimoto, Asymptotic stability and stability switches in a linear integro-differential system,, Differ. Equ. Appl., 3 (2011), 43. doi: 10.7153/dea-03-04. Google Scholar

[25]

W. Snow, Existence, Uniqueness and Stability for Nonlinear Differential-Difference Equations in the Neutral Case,, Thesis (Ph.D.)–New York University. 1964. 79 pp., (1964). Google Scholar

[26]

V. V. Vlasov and D. A. Medvedev, Functional-differential equations and related problems in spectral theory,, J. Math. Sci. (N. Y.), 164 (2010), 659. doi: 10.1007/s10958-010-9768-5. Google Scholar

[1]

Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105

[2]

Loïs Boullu, Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. Oscillations and asymptotic convergence for a delay differential equation modeling platelet production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2417-2442. doi: 10.3934/dcdsb.2018259

[3]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[4]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

[5]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[6]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[7]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[8]

P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220

[9]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[10]

Eugen Stumpf. On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3317-3340. doi: 10.3934/dcdsb.2017139

[11]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[12]

Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031

[13]

Saroj Panigrahi, Rakhee Basu. Oscillation results for second order nonlinear neutral differential equations with delay. Conference Publications, 2015, 2015 (special) : 906-912. doi: 10.3934/proc.2015.0906

[14]

John R. Graef, R. Savithri, E. Thandapani. Oscillatory properties of third order neutral delay differential equations. Conference Publications, 2003, 2003 (Special) : 342-350. doi: 10.3934/proc.2003.2003.342

[15]

Baruch Cahlon. Sufficient conditions for oscillations of higher order neutral delay differential equations. Conference Publications, 1998, 1998 (Special) : 124-137. doi: 10.3934/proc.1998.1998.124

[16]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[17]

Michael Scheutzow. Exponential growth rate for a singular linear stochastic delay differential equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1683-1696. doi: 10.3934/dcdsb.2013.18.1683

[18]

Arne Ogrowsky, Björn Schmalfuss. Unstable invariant manifolds for a nonautonomous differential equation with nonautonomous unbounded delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1663-1681. doi: 10.3934/dcdsb.2013.18.1663

[19]

A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701

[20]

Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2639-2655. doi: 10.3934/dcdsb.2018268

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]