2014, 34(7): 2963-2982. doi: 10.3934/dcds.2014.34.2963

Hyperbolicity and types of shadowing for $C^1$ generic vector fields

1. 

Instituto de Matemática, Universidade Federal do Rio de Janeiro, P. O. Box 68530, 21945-970 Rio de Janeiro, Brazil

Received  July 2013 Revised  September 2013 Published  December 2013

We study various types of shadowing properties and their implication for $C^1$ generic vector fields. We show that, generically, any of the following three hypotheses implies that an isolated set is topologically transitive and hyperbolic: (i) the set is chain transitive and satisfies the (classical) shadowing property, (ii) the set satisfies the limit shadowing property, or (iii) the set satisfies the (asymptotic) shadowing property with the additional hypothesis that stable and unstable manifolds of any pair of critical orbits intersect each other. In our proof we essentially rely on the property of chain transitivity and, in particular, show that it is implied by the limit shadowing property. We also apply our results to divergence-free vector fields.
Citation: Raquel Ribeiro. Hyperbolicity and types of shadowing for $C^1$ generic vector fields. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2963-2982. doi: 10.3934/dcds.2014.34.2963
References:
[1]

F. Abdenur and L. J. Díaz, Pseudo-orbit shadowing in the $C^1$ topology,, Discrete Contin. Dyn. Syst., 17 (2007), 223.

[2]

A. Arbieto and T. Catalan, Hyperbolicity in the volume preserving scenario,, Ergodic Theory Dynam. Systems, 33 (2013), 1644. doi: 10.1017/etds.2012.111.

[3]

A. Arbieto and C. Matheus, A pasting lemma and some apllications for conservative systems,, Ergodic Theory Dynam. Systems, 27 (2007), 1399. doi: 10.1017/S014338570700017X.

[4]

A. Arbieto and C. Morales, A dichotomy for higher-dimensional flows,, Proc. Amer. Math. Soc., 141 (2013), 2817. doi: 10.1090/S0002-9939-2013-11536-4.

[5]

M.-C. Arnaud, Le "closing lemma" en topologie $C^1$,, Mem. Soc. Math. Fr. (N. S.), (1998).

[6]

S. Bautista and C. Morales, Lectures on sectional Anosov flows,, preprint, (2011).

[7]

M. Bessa, A generic incompressible flow is topological mixing,, C. R. Math. Acad. Sci. Paris, 346 (2008), 1169. doi: 10.1016/j.crma.2008.07.012.

[8]

M. Bessa and J. Rocha, Contributions to the geometric and ergodic theory of conservative flows,, Ergod. Th. & Dynam. Sys., 33 (2013), 1709. doi: 10.1017/etds.2012.110.

[9]

M. Bessa and J. Rocha, On $C^1$-robust transitivity of volume-preserving flows,, J. Differential Equations, 245 (2008), 3127. doi: 10.1016/j.jde.2008.02.045.

[10]

M. L. Blank, Metric properties of minimal solutions of discrete periodical variational problems,, Nonlinearity, 2 (1989), 1. doi: 10.1088/0951-7715/2/1/001.

[11]

C. Bonatti and S. Crovisier, Récurrence et généricité,, Invent. Math., 158 (2004), 33. doi: 10.1007/s00222-004-0368-1.

[12]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,, Lecture Notes in Mathematics, (1975).

[13]

R. Bowen, On Axiom A Diffeomorphisms,, Regional Conference Series in Mathematics, (1978).

[14]

C. Conley, Isolated Invariant sets and the Morse Index,, CBMS Regional Conference Series in Mathematics, (1978).

[15]

S. Crovisier, Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms,, Publ. Math. Inst. Hautes Études Sci., (2006), 87. doi: 10.1007/s10240-006-0002-4.

[16]

T. Eirola, O. Nevalinna and S. Pilyugin, Limit shadowing property,, Numer. Funct. Anal. Optim., 18 (1997), 75. doi: 10.1080/01630569708816748.

[17]

C. Ferreira, Stability properties of divergence-free vector fields,, Dyn. Syst., 27 (2012), 223. doi: 10.1080/14689367.2012.655710.

[18]

J. Franks, Necessary conditions for the stability of diffeomorphisms,, Trans. Amer. Math. Soc., 158 (1971), 301. doi: 10.1090/S0002-9947-1971-0283812-3.

[19]

S. Gan and L. Wen, Nonsingular star flows satisfy Axiom A and the no-cycle condition,, Invent. Math., 164 (2006), 279. doi: 10.1007/s00222-005-0479-3.

[20]

S. Gan, M. Li and L. Wen, Robustly transitive singular sets via approach of an extended linear Poincaré flow,, Discrete Contin. Dyn. Syst., 13 (2005), 239. doi: 10.3934/dcds.2005.13.239.

[21]

S. Gan, L. Wen and S. Zhu, Indices of singularities of robustly transitive sets,, Discrete Contin. Dyn. Syst., 21 (2008), 945. doi: 10.3934/dcds.2008.21.945.

[22]

R. Gu, The asymptotic average shadowing property and transitivity,, Nonlinear Anal., 67 (2007), 1680. doi: 10.1016/j.na.2006.07.040.

[23]

R. Gu, The asymptotic average-shadowing property and transitivity for flows,, Chaos Solitons Fractals, 41 (2009), 2234. doi: 10.1016/j.chaos.2008.08.029.

[24]

R. Gu, Y. Sheng and Z. Xia, The average-shadowing property and transitivity for continuous flows,, Chaos Solitons Fractals, 23 (2005), 989. doi: 10.1016/j.chaos.2004.06.059.

[25]

J. K. Hale, Asymptotic Behaviour of Dissipative Systems,, Math. Surveys and Monographs, 25 (1988).

[26]

M. Hirsh, C. Pugh and M. Shub, Invariant manifolds,, Bull. Amer. Math. Soc., 76 (1970), 1015. doi: 10.1090/S0002-9904-1970-12537-X.

[27]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).

[28]

M. Komuro, Lorenz attractors do not have the pseudo-orbit tracing property,, J. Math. Soc. Japan, 37 (1985), 489. doi: 10.2969/jmsj/03730489.

[29]

I. Kupka, Contribution à la théorie des champs génériques,, Contributions to Differential Equations, 2 (1963), 457.

[30]

M. Lee, Usual limit shadowable homoclinic classes of generic diffeomorphisms,, Adv. Difference Equ., 2012 (2012). doi: 10.1186/1687-1847-2012-91.

[31]

K. Lee and X. Wen, Shadowable chain transitive sets of C1-generic diffeomorphisms,, Bull. Korean Math. Soc., 49 (2012), 263. doi: 10.4134/BKMS.2012.49.2.263.

[32]

R. Metzger and C. Morales, Sectional-hyperbolic systems,, Ergodic Theory Dynam. Systems, 28 (2008), 1587. doi: 10.1017/S0143385707000995.

[33]

J. Lewowicz, Lyapunov functions and topological stability,, J. Differential Equations, 38 (1980), 192. doi: 10.1016/0022-0396(80)90004-2.

[34]

S. Y. Pilyugin, Shadowing in Dynamical Systems,, Lecture Notes in Mathematics, (1706).

[35]

C. Pugh and C. Robinson, The $C^1$ closing lemma, including Hamiltonians,, Ergodic Theory Dynam. Systems, 3 (1983), 261. doi: 10.1017/S0143385700001978.

[36]

C. Robinson, Generic properties of conservative systems,, Amer. J. Math., 92 (1970), 562. doi: 10.2307/2373361.

[37]

M. Shub, Global Stability of Dynamical Systems,, Springer-Verlag, (1987).

[38]

S. Smale, Stable manifolds for differential equations and diffeomorphisms,, Ann. Sc. Norm. Super. Pisa (3), 17 (1963), 97.

[39]

L. Wen and Z. Xia, $C^1$-connecting lemmas,, Trans. Amer, 352 (2000), 5213. doi: 10.1090/S0002-9947-00-02553-8.

[40]

L. Wen, On the preperiodic set,, Discrete Contin. Dynam. Systems, 6 (2000), 237. doi: 10.3934/dcds.2000.6.237.

show all references

References:
[1]

F. Abdenur and L. J. Díaz, Pseudo-orbit shadowing in the $C^1$ topology,, Discrete Contin. Dyn. Syst., 17 (2007), 223.

[2]

A. Arbieto and T. Catalan, Hyperbolicity in the volume preserving scenario,, Ergodic Theory Dynam. Systems, 33 (2013), 1644. doi: 10.1017/etds.2012.111.

[3]

A. Arbieto and C. Matheus, A pasting lemma and some apllications for conservative systems,, Ergodic Theory Dynam. Systems, 27 (2007), 1399. doi: 10.1017/S014338570700017X.

[4]

A. Arbieto and C. Morales, A dichotomy for higher-dimensional flows,, Proc. Amer. Math. Soc., 141 (2013), 2817. doi: 10.1090/S0002-9939-2013-11536-4.

[5]

M.-C. Arnaud, Le "closing lemma" en topologie $C^1$,, Mem. Soc. Math. Fr. (N. S.), (1998).

[6]

S. Bautista and C. Morales, Lectures on sectional Anosov flows,, preprint, (2011).

[7]

M. Bessa, A generic incompressible flow is topological mixing,, C. R. Math. Acad. Sci. Paris, 346 (2008), 1169. doi: 10.1016/j.crma.2008.07.012.

[8]

M. Bessa and J. Rocha, Contributions to the geometric and ergodic theory of conservative flows,, Ergod. Th. & Dynam. Sys., 33 (2013), 1709. doi: 10.1017/etds.2012.110.

[9]

M. Bessa and J. Rocha, On $C^1$-robust transitivity of volume-preserving flows,, J. Differential Equations, 245 (2008), 3127. doi: 10.1016/j.jde.2008.02.045.

[10]

M. L. Blank, Metric properties of minimal solutions of discrete periodical variational problems,, Nonlinearity, 2 (1989), 1. doi: 10.1088/0951-7715/2/1/001.

[11]

C. Bonatti and S. Crovisier, Récurrence et généricité,, Invent. Math., 158 (2004), 33. doi: 10.1007/s00222-004-0368-1.

[12]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,, Lecture Notes in Mathematics, (1975).

[13]

R. Bowen, On Axiom A Diffeomorphisms,, Regional Conference Series in Mathematics, (1978).

[14]

C. Conley, Isolated Invariant sets and the Morse Index,, CBMS Regional Conference Series in Mathematics, (1978).

[15]

S. Crovisier, Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms,, Publ. Math. Inst. Hautes Études Sci., (2006), 87. doi: 10.1007/s10240-006-0002-4.

[16]

T. Eirola, O. Nevalinna and S. Pilyugin, Limit shadowing property,, Numer. Funct. Anal. Optim., 18 (1997), 75. doi: 10.1080/01630569708816748.

[17]

C. Ferreira, Stability properties of divergence-free vector fields,, Dyn. Syst., 27 (2012), 223. doi: 10.1080/14689367.2012.655710.

[18]

J. Franks, Necessary conditions for the stability of diffeomorphisms,, Trans. Amer. Math. Soc., 158 (1971), 301. doi: 10.1090/S0002-9947-1971-0283812-3.

[19]

S. Gan and L. Wen, Nonsingular star flows satisfy Axiom A and the no-cycle condition,, Invent. Math., 164 (2006), 279. doi: 10.1007/s00222-005-0479-3.

[20]

S. Gan, M. Li and L. Wen, Robustly transitive singular sets via approach of an extended linear Poincaré flow,, Discrete Contin. Dyn. Syst., 13 (2005), 239. doi: 10.3934/dcds.2005.13.239.

[21]

S. Gan, L. Wen and S. Zhu, Indices of singularities of robustly transitive sets,, Discrete Contin. Dyn. Syst., 21 (2008), 945. doi: 10.3934/dcds.2008.21.945.

[22]

R. Gu, The asymptotic average shadowing property and transitivity,, Nonlinear Anal., 67 (2007), 1680. doi: 10.1016/j.na.2006.07.040.

[23]

R. Gu, The asymptotic average-shadowing property and transitivity for flows,, Chaos Solitons Fractals, 41 (2009), 2234. doi: 10.1016/j.chaos.2008.08.029.

[24]

R. Gu, Y. Sheng and Z. Xia, The average-shadowing property and transitivity for continuous flows,, Chaos Solitons Fractals, 23 (2005), 989. doi: 10.1016/j.chaos.2004.06.059.

[25]

J. K. Hale, Asymptotic Behaviour of Dissipative Systems,, Math. Surveys and Monographs, 25 (1988).

[26]

M. Hirsh, C. Pugh and M. Shub, Invariant manifolds,, Bull. Amer. Math. Soc., 76 (1970), 1015. doi: 10.1090/S0002-9904-1970-12537-X.

[27]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).

[28]

M. Komuro, Lorenz attractors do not have the pseudo-orbit tracing property,, J. Math. Soc. Japan, 37 (1985), 489. doi: 10.2969/jmsj/03730489.

[29]

I. Kupka, Contribution à la théorie des champs génériques,, Contributions to Differential Equations, 2 (1963), 457.

[30]

M. Lee, Usual limit shadowable homoclinic classes of generic diffeomorphisms,, Adv. Difference Equ., 2012 (2012). doi: 10.1186/1687-1847-2012-91.

[31]

K. Lee and X. Wen, Shadowable chain transitive sets of C1-generic diffeomorphisms,, Bull. Korean Math. Soc., 49 (2012), 263. doi: 10.4134/BKMS.2012.49.2.263.

[32]

R. Metzger and C. Morales, Sectional-hyperbolic systems,, Ergodic Theory Dynam. Systems, 28 (2008), 1587. doi: 10.1017/S0143385707000995.

[33]

J. Lewowicz, Lyapunov functions and topological stability,, J. Differential Equations, 38 (1980), 192. doi: 10.1016/0022-0396(80)90004-2.

[34]

S. Y. Pilyugin, Shadowing in Dynamical Systems,, Lecture Notes in Mathematics, (1706).

[35]

C. Pugh and C. Robinson, The $C^1$ closing lemma, including Hamiltonians,, Ergodic Theory Dynam. Systems, 3 (1983), 261. doi: 10.1017/S0143385700001978.

[36]

C. Robinson, Generic properties of conservative systems,, Amer. J. Math., 92 (1970), 562. doi: 10.2307/2373361.

[37]

M. Shub, Global Stability of Dynamical Systems,, Springer-Verlag, (1987).

[38]

S. Smale, Stable manifolds for differential equations and diffeomorphisms,, Ann. Sc. Norm. Super. Pisa (3), 17 (1963), 97.

[39]

L. Wen and Z. Xia, $C^1$-connecting lemmas,, Trans. Amer, 352 (2000), 5213. doi: 10.1090/S0002-9947-00-02553-8.

[40]

L. Wen, On the preperiodic set,, Discrete Contin. Dynam. Systems, 6 (2000), 237. doi: 10.3934/dcds.2000.6.237.

[1]

Jifeng Chu, Zhaosheng Feng, Ming Li. Periodic shadowing of vector fields. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3623-3638. doi: 10.3934/dcds.2016.36.3623

[2]

Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901

[3]

Fang Zhang, Yunhua Zhou. On the limit quasi-shadowing property. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2861-2879. doi: 10.3934/dcds.2017123

[4]

Piotr Kościelniak, Marcin Mazur, Piotr Oprocha, Paweł Pilarczyk. Shadowing is generic---a continuous map case. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3591-3609. doi: 10.3934/dcds.2014.34.3591

[5]

Sergei Yu. Pilyugin. Variational shadowing. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 733-737. doi: 10.3934/dcdsb.2010.14.733

[6]

Keonhee Lee, Kazuhiro Sakai. Various shadowing properties and their equivalence. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 533-540. doi: 10.3934/dcds.2005.13.533

[7]

Shaobo Gan. A generalized shadowing lemma. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 627-632. doi: 10.3934/dcds.2002.8.627

[8]

Sergey V. Bolotin. Shadowing chains of collision orbits. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 235-260. doi: 10.3934/dcds.2006.14.235

[9]

S. Yu. Pilyugin, A. A. Rodionova, Kazuhiro Sakai. Orbital and weak shadowing properties. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 287-308. doi: 10.3934/dcds.2003.9.287

[10]

S. Yu. Pilyugin. Inverse shadowing by continuous methods. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 29-38. doi: 10.3934/dcds.2002.8.29

[11]

Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355

[12]

Keonhee Lee, Kazumine Moriyasu, Kazuhiro Sakai. $C^1$-stable shadowing diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 683-697. doi: 10.3934/dcds.2008.22.683

[13]

Alexey A. Petrov, Sergei Yu. Pilyugin. Shadowing near nonhyperbolic fixed points. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3761-3772. doi: 10.3934/dcds.2014.34.3761

[14]

J. C. Artés, Jaume Llibre, J. C. Medrado. Nonexistence of limit cycles for a class of structurally stable quadratic vector fields. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 259-270. doi: 10.3934/dcds.2007.17.259

[15]

Flavio Abdenur, Lorenzo J. Díaz. Pseudo-orbit shadowing in the $C^1$ topology. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 223-245. doi: 10.3934/dcds.2007.17.223

[16]

Piotr Kościelniak, Marcin Mazur. On $C^0$ genericity of various shadowing properties. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 523-530. doi: 10.3934/dcds.2005.12.523

[17]

Davor Dragičević. Admissibility, a general type of Lipschitz shadowing and structural stability. Communications on Pure & Applied Analysis, 2015, 14 (3) : 861-880. doi: 10.3934/cpaa.2015.14.861

[18]

Wolf-Jürgen Beyn, Sergey Piskarev. Shadowing for discrete approximations of abstract parabolic equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 19-42. doi: 10.3934/dcdsb.2008.10.19

[19]

Shaobo Gan, Kazuhiro Sakai, Lan Wen. $C^1$ -stably weakly shadowing homoclinic classes admit dominated splittings. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 205-216. doi: 10.3934/dcds.2010.27.205

[20]

S. Yu. Pilyugin, Kazuhiro Sakai, O. A. Tarakanov. Transversality properties and $C^1$-open sets of diffeomorphisms with weak shadowing. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 871-882. doi: 10.3934/dcds.2006.16.871

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]