2014, 34(7): 2819-2827. doi: 10.3934/dcds.2014.34.2819

Pointwise hyperbolicity implies uniform hyperbolicity

1. 

Department of Mathematics, Tufts University, Medford, MA 02155

2. 

Department of Mathematics, McAllister Building, Pennsylvania State University, University Park, PA 16802

3. 

Department of Mathematics, Lund Institute of Technology, Lunds Universitet, Box 118, SE-22100 Lund, Sweden

Received  March 2013 Revised  October 2013 Published  December 2013

We provide a general mechanism for obtaining uniform information from pointwise data. For instance, a diffeomorphism of a compact Riemannian manifold with pointwise expanding and contracting continuous invariant cone families is an Anosov diffeomorphism, i.e., the entire manifold is uniformly hyperbolic.
Citation: Boris Hasselblatt, Yakov Pesin, Jörg Schmeling. Pointwise hyperbolicity implies uniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2819-2827. doi: 10.3934/dcds.2014.34.2819
References:
[1]

J. F. Alves, V. Araújo and B. Saussol, On the uniform hyperbolicity of some nonuniformly hyperbolic systems,, Proc. Amer. Math. Soc., 131 (2003), 1303. doi: 10.1090/S0002-9939-02-06857-0.

[2]

L. Barreira and Y. Pesin, Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents,, Encyclopedia of Mathematics and its Applications, (2007).

[3]

Y. Cao, Non-zero Lyapunov exponents and uniform hyperbolicity,, Nonlinearity, 16 (2003), 1473. doi: 10.1088/0951-7715/16/4/316.

[4]

Y. Cao, S. Luzzatto and I. Rios, A minimum principle for Lyapunov exponents and a higher-dimensional version of a theorem of Mañé,, Qual. Theory Dyn. Syst., 5 (2004), 261. doi: 10.1007/BF02972681.

[5]

Y. Cao, S. Luzzatto and I. Rios, Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: Horseshoes with internal tangencies,, Discrete Contin. Dyn. Syst., 15 (2006), 61. doi: 10.3934/dcds.2006.15.61.

[6]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, 54 (1995).

[7]

R. Mañé, Quasi-Anosov diffeomorphisms and hyperbolic manifolds,, Trans. Amer. Math. Soc., 229 (1977), 351.

[8]

R. Sacker and G. Sell, Existence of dichotomies and invariant splittings for linear differential systems. I,, J. Differential Equations, 15 (1974), 429. doi: 10.1016/0022-0396(74)90067-9.

show all references

References:
[1]

J. F. Alves, V. Araújo and B. Saussol, On the uniform hyperbolicity of some nonuniformly hyperbolic systems,, Proc. Amer. Math. Soc., 131 (2003), 1303. doi: 10.1090/S0002-9939-02-06857-0.

[2]

L. Barreira and Y. Pesin, Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents,, Encyclopedia of Mathematics and its Applications, (2007).

[3]

Y. Cao, Non-zero Lyapunov exponents and uniform hyperbolicity,, Nonlinearity, 16 (2003), 1473. doi: 10.1088/0951-7715/16/4/316.

[4]

Y. Cao, S. Luzzatto and I. Rios, A minimum principle for Lyapunov exponents and a higher-dimensional version of a theorem of Mañé,, Qual. Theory Dyn. Syst., 5 (2004), 261. doi: 10.1007/BF02972681.

[5]

Y. Cao, S. Luzzatto and I. Rios, Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: Horseshoes with internal tangencies,, Discrete Contin. Dyn. Syst., 15 (2006), 61. doi: 10.3934/dcds.2006.15.61.

[6]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, 54 (1995).

[7]

R. Mañé, Quasi-Anosov diffeomorphisms and hyperbolic manifolds,, Trans. Amer. Math. Soc., 229 (1977), 351.

[8]

R. Sacker and G. Sell, Existence of dichotomies and invariant splittings for linear differential systems. I,, J. Differential Equations, 15 (1974), 429. doi: 10.1016/0022-0396(74)90067-9.

[1]

Luis Barreira, Claudia Valls. Growth rates and nonuniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 509-528. doi: 10.3934/dcds.2008.22.509

[2]

Mickaël Kourganoff. Uniform hyperbolicity in nonflat billiards. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1145-1160. doi: 10.3934/dcds.2018048

[3]

Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227

[4]

Jana Rodriguez Hertz. Genericity of nonuniform hyperbolicity in dimension 3. Journal of Modern Dynamics, 2012, 6 (1) : 121-138. doi: 10.3934/jmd.2012.6.121

[5]

Luis Barreira, Claudia Valls. Regularity of center manifolds under nonuniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 55-76. doi: 10.3934/dcds.2011.30.55

[6]

Marcin Mazur, Jacek Tabor, Piotr Kościelniak. Semi-hyperbolicity and hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1029-1038. doi: 10.3934/dcds.2008.20.1029

[7]

David Damanik, Jake Fillman, Milivoje Lukic, William Yessen. Characterizations of uniform hyperbolicity and spectra of CMV matrices. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1009-1023. doi: 10.3934/dcdss.2016039

[8]

Yakov Pesin, Vaughn Climenhaga. Open problems in the theory of non-uniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 589-607. doi: 10.3934/dcds.2010.27.589

[9]

Marcin Mazur, Jacek Tabor. Computational hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1175-1189. doi: 10.3934/dcds.2011.29.1175

[10]

Giovanni Forni. A geometric criterion for the nonuniform hyperbolicity of the Kontsevich--Zorich cocycle. Journal of Modern Dynamics, 2011, 5 (2) : 355-395. doi: 10.3934/jmd.2011.5.355

[11]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[12]

Rasul Shafikov, Christian Wolf. Stable sets, hyperbolicity and dimension. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 403-412. doi: 10.3934/dcds.2005.12.403

[13]

Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901

[14]

Arno Berger. On finite-time hyperbolicity. Communications on Pure & Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963

[15]

Christian Bonatti, Shaobo Gan, Dawei Yang. On the hyperbolicity of homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1143-1162. doi: 10.3934/dcds.2009.25.1143

[16]

Zhenning Cai, Yuwei Fan, Ruo Li. On hyperbolicity of 13-moment system. Kinetic & Related Models, 2014, 7 (3) : 415-432. doi: 10.3934/krm.2014.7.415

[17]

Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187-208. doi: 10.3934/jmd.2008.2.187

[18]

Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527

[19]

Yi Shi, Shaobo Gan, Lan Wen. On the singular-hyperbolicity of star flows. Journal of Modern Dynamics, 2014, 8 (2) : 191-219. doi: 10.3934/jmd.2014.8.191

[20]

Dawei Yang, Shaobo Gan, Lan Wen. Minimal non-hyperbolicity and index-completeness. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1349-1366. doi: 10.3934/dcds.2009.25.1349

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]