2014, 34(3): 1171-1182. doi: 10.3934/dcds.2014.34.1171

Periodic points on the $2$-sphere

1. 

Department of Mathematics, University of Chicago, 5734 S. University Ave, Chicago, Illinois 60637, United States

2. 

CONICET, IMAS, Universidad de Buenos Aires, Buenos Aires

Received  October 2012 Revised  March 2013 Published  August 2013

For a $C^{1}$ degree two latitude preserving endomorphism $f$ of the $2$-sphere, we show that for each $n$, $f$ has at least $2^{n}$ periodic points of period $n$.
Citation: Charles Pugh, Michael Shub. Periodic points on the $2$-sphere. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1171-1182. doi: 10.3934/dcds.2014.34.1171
References:
[1]

Katrin Gelfert and Christian Wolf, On the distribution of periodic orbits,, Discrete and Continuous Dynamical Systems, 36 (2010), 949. doi: 10.3934/dcds.2010.26.949.

[2]

Anatole Katok, Lyapunov Exponents, Entropy, and Periodic Points for Diffeomorphisms,, Institute des Hautes Études Scientifiques, 51 (1980), 137.

[3]

Michal Misiurewicz and Feliks Przytycki, Topological entropy and degree of smooth mappings,, Bull. Acad. Pol., 25 (1977), 573.

[4]

Michael Shub, All, most, dome differentiable dynamical systems,, Proceedings of the International Congress of Mathematicians, (2006), 99.

[5]

Michael Shub and Dennis Sullivan, A remark on the lefschetz fixed point formula for differentiable maps,, Topology, 13 (1974), 189. doi: 10.1016/0040-9383(74)90009-3.

[6]

Michael Shub, Alexander cocycles and dynamics,, Asterisque, (1978), 395.

show all references

References:
[1]

Katrin Gelfert and Christian Wolf, On the distribution of periodic orbits,, Discrete and Continuous Dynamical Systems, 36 (2010), 949. doi: 10.3934/dcds.2010.26.949.

[2]

Anatole Katok, Lyapunov Exponents, Entropy, and Periodic Points for Diffeomorphisms,, Institute des Hautes Études Scientifiques, 51 (1980), 137.

[3]

Michal Misiurewicz and Feliks Przytycki, Topological entropy and degree of smooth mappings,, Bull. Acad. Pol., 25 (1977), 573.

[4]

Michael Shub, All, most, dome differentiable dynamical systems,, Proceedings of the International Congress of Mathematicians, (2006), 99.

[5]

Michael Shub and Dennis Sullivan, A remark on the lefschetz fixed point formula for differentiable maps,, Topology, 13 (1974), 189. doi: 10.1016/0040-9383(74)90009-3.

[6]

Michael Shub, Alexander cocycles and dynamics,, Asterisque, (1978), 395.

[1]

Gabriele Benedetti, Kai Zehmisch. On the existence of periodic orbits for magnetic systems on the two-sphere. Journal of Modern Dynamics, 2015, 9: 141-146. doi: 10.3934/jmd.2015.9.141

[2]

Grzegorz Graff, Michał Misiurewicz, Piotr Nowak-Przygodzki. Periodic points of latitudinal maps of the $m$-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6187-6199. doi: 10.3934/dcds.2016070

[3]

Ihsan Topaloglu. On a nonlocal isoperimetric problem on the two-sphere. Communications on Pure & Applied Analysis, 2013, 12 (1) : 597-620. doi: 10.3934/cpaa.2013.12.597

[4]

Jorge Rebaza. Uniformly distributed points on the sphere. Communications on Pure & Applied Analysis, 2005, 4 (2) : 389-403. doi: 10.3934/cpaa.2005.4.389

[5]

Alexander Nabutovsky and Regina Rotman. Lengths of geodesics between two points on a Riemannian manifold. Electronic Research Announcements, 2007, 13: 13-20.

[6]

Jorge Sotomayor, Ronaldo Garcia. Codimension two umbilic points on surfaces immersed in $R^3$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 293-308. doi: 10.3934/dcds.2007.17.293

[7]

Akhtam Dzhalilov, Isabelle Liousse, Dieter Mayer. Singular measures of piecewise smooth circle homeomorphisms with two break points. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 381-403. doi: 10.3934/dcds.2009.24.381

[8]

P. De Maesschalck. Gevrey normal forms for nilpotent contact points of order two. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 677-688. doi: 10.3934/dcds.2014.34.677

[9]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[10]

Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic & Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707

[11]

Futoshi Takahashi. On the number of maximum points of least energy solution to a two-dimensional Hénon equation with large exponent. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1237-1241. doi: 10.3934/cpaa.2013.12.1237

[12]

Erik I. Verriest. Generalizations of Naismith's problem: Minimal transit time between two points in a heterogenous terrian. Conference Publications, 2011, 2011 (Special) : 1413-1422. doi: 10.3934/proc.2011.2011.1413

[13]

K. H. Kim, F. W. Roush and J. B. Wagoner. Inert actions on periodic points. Electronic Research Announcements, 1997, 3: 55-62.

[14]

Ganggang Li, Xiwen Lu. Two-machine scheduling with periodic availability constraints to minimize makespan. Journal of Industrial & Management Optimization, 2015, 11 (2) : 685-700. doi: 10.3934/jimo.2015.11.685

[15]

Yulia Karpeshina and Young-Ran Lee. On polyharmonic operators with limit-periodic potential in dimension two. Electronic Research Announcements, 2006, 12: 113-120.

[16]

Peter Giesl, James McMichen. Determination of the basin of attraction of a periodic orbit in two dimensions using meshless collocation. Journal of Computational Dynamics, 2016, 3 (2) : 191-210. doi: 10.3934/jcd.2016010

[17]

Jong-Shenq Guo, Chang-Hong Wu. Front propagation for a two-dimensional periodic monostable lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 197-223. doi: 10.3934/dcds.2010.26.197

[18]

D. Motreanu, V. V. Motreanu, Nikolaos S. Papageorgiou. Two nontrivial solutions for periodic systems with indefinite linear part. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 197-210. doi: 10.3934/dcds.2007.19.197

[19]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[20]

Florian Kogelbauer. On the symmetry of spatially periodic two-dimensional water waves. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7057-7061. doi: 10.3934/dcds.2016107

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]