2013, 33(2): 643-662. doi: 10.3934/dcds.2013.33.643

The Cauchy problem for a nonhomogeneous heat equation with reaction

1. 

Departamento de Matemática Aplicada, Universidad Carlos III de Madrid, 28911 Leganés, Spain

2. 

Departamento de Matemáticas, U. Politécnica de Madrid, 28040 Madrid, Spain

3. 

Departamento de Matemáticas, U. Rey Juan Carlos, 28933 Móstoles, Spain

Received  July 2011 Revised  July 2012 Published  September 2012

We study the behaviour of the solutions to the Cauchy problem $$ \left\{\begin{array}{ll} \rho(x)u_t=\Delta u+u^p,&\quad x\in\mathbb{R}^N ,\;t\in(0,T),\\ u(x,\, 0)=u_0(x),&\quad x\in\mathbb{R}^N , \end{array}\right. $$ with $p>0$ and a positive density $\rho$ satisfying $\rho(x)\sim|x|^{-\sigma}$ for large $|x|$, $0<\sigma<2< N$. We consider both the cases of a bounded density and the singular density $\rho(x)=|x|^{-\sigma}$. We are interested in describing sharp decay conditions on the data at infinity that guarantee local/global existence of solutions, which are unique in classes of functions with the same decay. We prove that larger data give rise to instantaneous complete blow-up. We also deal with the occurrence of finite-time blow-up. We prove that the global existence exponent is $p_0=1$, while the Fujita exponent depends on $\sigma$, namely $p_c=1+\frac2{N-\sigma}$.
    We show that instantaneous blow-up at space infinity takes place when $p\le1$.
    We also briefly discuss the case $2<\sigma< N$: we prove that the Fujita exponent in this case does not depend on $\sigma$, $\tilde{p}_c=1+\frac2{N-2}$, and for initial values not too small at infinity a phenomenon of instantaneous complete blow-up occurs in the range $1< p < \tilde{p}_c$
Citation: Arturo de Pablo, Guillermo Reyes, Ariel Sánchez. The Cauchy problem for a nonhomogeneous heat equation with reaction. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 643-662. doi: 10.3934/dcds.2013.33.643
References:
[1]

J. Aguirre and M. Escobedo, On the blow-up of solutions of a convective reaction diffusion equation,, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 433. doi: 10.1017/S0308210500025828.

[2]

J. Aguirre and M. Escobedo, A Cauchy problem for $u_t=\Delta u+u^p$ with $0< p <1$. Asymptotic behaviour of solutions,, Ann. Fac. Sci. Toulouse Math, 8 (): 175.

[3]

P. Baras and J. A. Goldstein, The heat equation with a singular potential,, Trans. Amer. Math. Soc., 284 (1984), 121.

[4]

P. Baras and R. Kersner, Local and global solvability of a class of semilinear parabolic equations,, J. of Differential Equations, 68 (1987), 238.

[5]

C. Bandle and H. A. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains,, Trans. Amer. Math. Soc., 316 (1989), 595.

[6]

K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: the sequel,, J. Math. Anal. Appl., 243 (2000), 85. doi: 10.1006/jmaa.1999.6663.

[7]

S. Eidelman, S. Kamin and F. Porper, Uniqueness of solutions of the Cauchy problem for parabolic equations degenerating at infinity,, Asymptotic Analysis, 22 (2000), 349.

[8]

A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations,, Indiana Univ. Math. J., 34 (1985), 425. doi: 10.1512/iumj.1985.34.34025.

[9]

H. Fujita, On the blowing-up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$,, J. Fac. Sci. Univ. Tokyo Sec. IA Math, 16 (1966), 105.

[10]

V. A. Galaktionov and H. A. Levine, On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary,, Israel J. Math, 94 (1996), 125. doi: 10.1007/BF02762700.

[11]

S. Kamin, R. Kersner and A. Tesei, On the Cauchy problem for a class of parabolic equations with variable density,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 9 (1998), 279.

[12]

S. Kamin, A. Pozio and A. Tesei, Admissible conditions for parabolic equations degenerating at infinity,, Algebra i Analiz, 19 (2007), 105.

[13]

S. Kaplan, On the growth of solutions of quasilinear parabolic equations,, Comm. Pure Appl. Math, 16 (1963), 305. doi: 10.1002/cpa.3160160307.

[14]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uralceva, "Linear and Quasilinear Equation of Parabolic Type,", (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, (1968).

[15]

T. Y. Lee and W. Ni, Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem,, Trans. Amer. Math. Soc., 333 (1992), 365. doi: 10.1090/S0002-9947-1992-1057781-6.

[16]

H. A. Levine, The role of critical exponents in blowup theorems,, SIAM Rev., 32 (1990), 262.

[17]

A. V. Martynenko and A. F. Tedeev, The Cauchy problem for a quasilinear parabolic equation with a source and nonhomogeneous density,, Zh. Vychisl. Mat. Mat. Fiz., 47 (2007), 245.

[18]

A. de Pablo and J. L. Vázquez, The balance between strong reaction and slow diffusion,, Comm. Partial Differential Equations, 15 (1990), 159.

[19]

R. G. Pinsky, Existence and nonexistence of global solutions for $u_t=\Delta u+a(x)u^p$ in $\mathbbR^d$,, J. Differential Equations, 133 (1997), 152.

[20]

S. I. Pohozaev and A. Tesei, Nonexistence of local solutions to semilinear partial differential inequalities,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 487.

[21]

M. A. Pozio, F. Punzo and A. Tesei, Uniqueness and nonuniqueness of solutions to parabolic problems with singular coefficients,, Discrete Contin. Dyn. Syst., 30 (2011), 891.

[22]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,", Springer-Verlag, (1984).

[23]

Y. W. Qi, The critical exponents of parabolic equations and blow-up in $R^n$,, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 123.

[24]

G. Reyes and J. L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with slowly decaying density,, Commun. Pure Appl. Anal., 8 (2009), 493.

[25]

G. Reyes and J. L. Vázquez, A weighted symmetrization for nonlinear elliptic and parabolic equations,, J. Eur. Math. Soc., 8 (2006), 531.

[26]

C. Wang and S. Zheng, Critical Fujita exponents of degenerate and singular parabolic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 415.

[27]

F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation,, Israel J. Math, 38 (1981), 29. doi: 10.1007/BF02761845.

show all references

References:
[1]

J. Aguirre and M. Escobedo, On the blow-up of solutions of a convective reaction diffusion equation,, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 433. doi: 10.1017/S0308210500025828.

[2]

J. Aguirre and M. Escobedo, A Cauchy problem for $u_t=\Delta u+u^p$ with $0< p <1$. Asymptotic behaviour of solutions,, Ann. Fac. Sci. Toulouse Math, 8 (): 175.

[3]

P. Baras and J. A. Goldstein, The heat equation with a singular potential,, Trans. Amer. Math. Soc., 284 (1984), 121.

[4]

P. Baras and R. Kersner, Local and global solvability of a class of semilinear parabolic equations,, J. of Differential Equations, 68 (1987), 238.

[5]

C. Bandle and H. A. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains,, Trans. Amer. Math. Soc., 316 (1989), 595.

[6]

K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: the sequel,, J. Math. Anal. Appl., 243 (2000), 85. doi: 10.1006/jmaa.1999.6663.

[7]

S. Eidelman, S. Kamin and F. Porper, Uniqueness of solutions of the Cauchy problem for parabolic equations degenerating at infinity,, Asymptotic Analysis, 22 (2000), 349.

[8]

A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations,, Indiana Univ. Math. J., 34 (1985), 425. doi: 10.1512/iumj.1985.34.34025.

[9]

H. Fujita, On the blowing-up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$,, J. Fac. Sci. Univ. Tokyo Sec. IA Math, 16 (1966), 105.

[10]

V. A. Galaktionov and H. A. Levine, On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary,, Israel J. Math, 94 (1996), 125. doi: 10.1007/BF02762700.

[11]

S. Kamin, R. Kersner and A. Tesei, On the Cauchy problem for a class of parabolic equations with variable density,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 9 (1998), 279.

[12]

S. Kamin, A. Pozio and A. Tesei, Admissible conditions for parabolic equations degenerating at infinity,, Algebra i Analiz, 19 (2007), 105.

[13]

S. Kaplan, On the growth of solutions of quasilinear parabolic equations,, Comm. Pure Appl. Math, 16 (1963), 305. doi: 10.1002/cpa.3160160307.

[14]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uralceva, "Linear and Quasilinear Equation of Parabolic Type,", (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, (1968).

[15]

T. Y. Lee and W. Ni, Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem,, Trans. Amer. Math. Soc., 333 (1992), 365. doi: 10.1090/S0002-9947-1992-1057781-6.

[16]

H. A. Levine, The role of critical exponents in blowup theorems,, SIAM Rev., 32 (1990), 262.

[17]

A. V. Martynenko and A. F. Tedeev, The Cauchy problem for a quasilinear parabolic equation with a source and nonhomogeneous density,, Zh. Vychisl. Mat. Mat. Fiz., 47 (2007), 245.

[18]

A. de Pablo and J. L. Vázquez, The balance between strong reaction and slow diffusion,, Comm. Partial Differential Equations, 15 (1990), 159.

[19]

R. G. Pinsky, Existence and nonexistence of global solutions for $u_t=\Delta u+a(x)u^p$ in $\mathbbR^d$,, J. Differential Equations, 133 (1997), 152.

[20]

S. I. Pohozaev and A. Tesei, Nonexistence of local solutions to semilinear partial differential inequalities,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 487.

[21]

M. A. Pozio, F. Punzo and A. Tesei, Uniqueness and nonuniqueness of solutions to parabolic problems with singular coefficients,, Discrete Contin. Dyn. Syst., 30 (2011), 891.

[22]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,", Springer-Verlag, (1984).

[23]

Y. W. Qi, The critical exponents of parabolic equations and blow-up in $R^n$,, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 123.

[24]

G. Reyes and J. L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with slowly decaying density,, Commun. Pure Appl. Anal., 8 (2009), 493.

[25]

G. Reyes and J. L. Vázquez, A weighted symmetrization for nonlinear elliptic and parabolic equations,, J. Eur. Math. Soc., 8 (2006), 531.

[26]

C. Wang and S. Zheng, Critical Fujita exponents of degenerate and singular parabolic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 415.

[27]

F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation,, Israel J. Math, 38 (1981), 29. doi: 10.1007/BF02761845.

[1]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[2]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[3]

Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations & Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355

[4]

Monica Marras, Stella Vernier Piro. Blow-up phenomena in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4001-4014. doi: 10.3934/dcds.2012.32.4001

[5]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[6]

Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63

[7]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

[8]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[9]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[10]

Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171

[11]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[12]

Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042

[13]

Alessio Fiscella, Enzo Vitillaro. Local Hadamard well--posedness and blow--up for reaction--diffusion equations with non--linear dynamical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5015-5047. doi: 10.3934/dcds.2013.33.5015

[14]

Ning-An Lai, Yi Zhou. Blow up for initial boundary value problem of critical semilinear wave equation in two space dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1499-1510. doi: 10.3934/cpaa.2018072

[15]

Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure & Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

[16]

Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519

[17]

Nejib Mahmoudi. Single-point blow-up for a multi-component reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 209-230. doi: 10.3934/dcds.2018010

[18]

Hermen Jan Hupkes, Emmanuelle Augeraud-Véron. Well-posedness of initial value problems for functional differential and algebraic equations of mixed type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 737-765. doi: 10.3934/dcds.2011.30.737

[19]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[20]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]