2013, 33(11&12): 5273-5292. doi: 10.3934/dcds.2013.33.5273

A thermo piezoelectric model: Exponential decay of the total energy

1. 

National Laboratory of Scientific Computation, LNCC/MCT, Av. Getulio Vargas 333, Quitandinha, Petrópolis, RJ, 25651-070, Brazil

2. 

National Laboratory of Scientific Computation, LNCC/MCT, Av. Getulio Vargas 333, Quitandinha, Petrópolis, RJ, CEP 25651-070, Brazil

Received  October 2011 Revised  April 2012 Published  May 2013

We consider a linear evolution model describing a piezoelectric phenomenon under thermal effects as suggested by R. Mindlin [13] and W. Nowacki [16]. We prove the equivalence between exponential decay of the total energy and an observability inequality for an anisotropic elastic wave system. Our strategy is to use a decoupling method to reduce the problem to an equivalent observability inequality for an anisotropic elastic wave system and assume a condition which guarantees that the corresponding elliptic operator has no eigenfunctions with null divergence.
Citation: Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. A thermo piezoelectric model: Exponential decay of the total energy. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5273-5292. doi: 10.3934/dcds.2013.33.5273
References:
[1]

K. Ammari and S. Nicaise, Stabilization of a piezoelectric system,, Asymptotic Analysis, 73 (2011), 125.

[2]

I. Babuska, Error bounds for finite element method,, Numerishe Mathematik, 16 (1971), 322.

[3]

P. G. Ciarlet, "Mathematical Elasticity, Vols I and II,", North-Holland, I (1988).

[4]

C. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity,, Arch. Rational Mech. Anal., 29 (1968), 241. doi: 10.1007/BF00276727.

[5]

H. Funakubo, "Ed. Shape Memory Alloys,", Translated from the Japanese by J. B. Kennedy, (1984).

[6]

D. Henry, O. Lopes and A. Perissinotto, On the essential spectrum of a semigroup of thermoelasticity,, Nonlinear Anal. TMA, 21 (1993), 65. doi: 10.1016/0362-546X(93)90178-U.

[7]

D. Iessan, On some theorems in Thermopiezoelectricity,, J. Thermal Stresses, 12 (1989), 209. doi: 10.1080/01495738908961962.

[8]

B. Kapitonov, B. Miara and G. Perla Menzala, Stabilization of a layered Piezoelectric 3-D body by boundary dissipation,, ESAIM, 12 (2006), 198. doi: 10.1051/cocv:2005028.

[9]

B. Kapitonov, B. Miara and G. Perla Menzala, Boundary observation and exact control of a quasi electrostatic piezoelectric system in multilayered media,, SIAM, 46 (2007), 1080. doi: 10.1137/050629884.

[10]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity,, Arch. Rational Mech. Anal., 148 (1999), 179. doi: 10.1007/s002050050160.

[11]

J. L. Lions, "Contrôlabilité Exacte, Stabilization et Perturbations de Systèmes Distribués,", Tome 1, (1988).

[12]

B. Miara and M. Lima, Energy decay in piezoelectric systems,, Applicable Analysis, 88 (2009), 947. doi: 10.1080/00036810903042166.

[13]

R. D. Mindlin, Equations of high frequency vibrations of thermopiezoelectric crystal plates,, International Journal of Solid Structures, 10 (1974), 625. doi: 10.1016/0020-7683(74)90047-X.

[14]

I. Müller, Six lectures in shape memory,, Centre Recherches Mathématiques, 13 (1998).

[15]

S. Nicaise, Stability and controllability of the electromagneto-elastic system,, Post. Math., 60 (2003), 73.

[16]

W. Nowacki, Some general theorems of thermopiezoelectricity,, J. Thermal Stresses, 1 (1978), 171. doi: 10.1080/01495737808926940.

[17]

J. M. Sejje Suárez, Modelagem de fenômenos termopiezoelétricos: Analise assintótica e Simulação Numérica,, Tese de Doutorado (2011) Laboratório Nacional de Computação Cientifica (LNCC-MCT), (2011).

[18]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Annali di Matematica Pura ed. Applicata, CXLVI (1987), 65. doi: 10.1007/BF01762360.

[19]

R. C. Smith, "Smart Material Systems. Model Development,", SIAM, (2005). doi: 10.1137/1.9780898717471.

[20]

A. V. Srinivasan and D. M. McFarland, "Smart Structures: Analysis and Design,", Cambridge University Press, (2001).

[21]

K. Uchino, "Piezoelectric Actuators and Ultrasonic Motors,", Kluwer Academic Publishers, (1997). doi: 10.1007/978-1-4613-1463-9.

[22]

E. Zuazua, Controllability of the linear system of thermoelasticity,, J. Math. Pures Appl., 74 (1995), 291.

show all references

References:
[1]

K. Ammari and S. Nicaise, Stabilization of a piezoelectric system,, Asymptotic Analysis, 73 (2011), 125.

[2]

I. Babuska, Error bounds for finite element method,, Numerishe Mathematik, 16 (1971), 322.

[3]

P. G. Ciarlet, "Mathematical Elasticity, Vols I and II,", North-Holland, I (1988).

[4]

C. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity,, Arch. Rational Mech. Anal., 29 (1968), 241. doi: 10.1007/BF00276727.

[5]

H. Funakubo, "Ed. Shape Memory Alloys,", Translated from the Japanese by J. B. Kennedy, (1984).

[6]

D. Henry, O. Lopes and A. Perissinotto, On the essential spectrum of a semigroup of thermoelasticity,, Nonlinear Anal. TMA, 21 (1993), 65. doi: 10.1016/0362-546X(93)90178-U.

[7]

D. Iessan, On some theorems in Thermopiezoelectricity,, J. Thermal Stresses, 12 (1989), 209. doi: 10.1080/01495738908961962.

[8]

B. Kapitonov, B. Miara and G. Perla Menzala, Stabilization of a layered Piezoelectric 3-D body by boundary dissipation,, ESAIM, 12 (2006), 198. doi: 10.1051/cocv:2005028.

[9]

B. Kapitonov, B. Miara and G. Perla Menzala, Boundary observation and exact control of a quasi electrostatic piezoelectric system in multilayered media,, SIAM, 46 (2007), 1080. doi: 10.1137/050629884.

[10]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity,, Arch. Rational Mech. Anal., 148 (1999), 179. doi: 10.1007/s002050050160.

[11]

J. L. Lions, "Contrôlabilité Exacte, Stabilization et Perturbations de Systèmes Distribués,", Tome 1, (1988).

[12]

B. Miara and M. Lima, Energy decay in piezoelectric systems,, Applicable Analysis, 88 (2009), 947. doi: 10.1080/00036810903042166.

[13]

R. D. Mindlin, Equations of high frequency vibrations of thermopiezoelectric crystal plates,, International Journal of Solid Structures, 10 (1974), 625. doi: 10.1016/0020-7683(74)90047-X.

[14]

I. Müller, Six lectures in shape memory,, Centre Recherches Mathématiques, 13 (1998).

[15]

S. Nicaise, Stability and controllability of the electromagneto-elastic system,, Post. Math., 60 (2003), 73.

[16]

W. Nowacki, Some general theorems of thermopiezoelectricity,, J. Thermal Stresses, 1 (1978), 171. doi: 10.1080/01495737808926940.

[17]

J. M. Sejje Suárez, Modelagem de fenômenos termopiezoelétricos: Analise assintótica e Simulação Numérica,, Tese de Doutorado (2011) Laboratório Nacional de Computação Cientifica (LNCC-MCT), (2011).

[18]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Annali di Matematica Pura ed. Applicata, CXLVI (1987), 65. doi: 10.1007/BF01762360.

[19]

R. C. Smith, "Smart Material Systems. Model Development,", SIAM, (2005). doi: 10.1137/1.9780898717471.

[20]

A. V. Srinivasan and D. M. McFarland, "Smart Structures: Analysis and Design,", Cambridge University Press, (2001).

[21]

K. Uchino, "Piezoelectric Actuators and Ultrasonic Motors,", Kluwer Academic Publishers, (1997). doi: 10.1007/978-1-4613-1463-9.

[22]

E. Zuazua, Controllability of the linear system of thermoelasticity,, J. Math. Pures Appl., 74 (1995), 291.

[1]

Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411

[2]

Sandra Carillo. Materials with memory: Free energies & solution exponential decay. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1235-1248. doi: 10.3934/cpaa.2010.9.1235

[3]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks & Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145

[4]

Tomasz Komorowski, Stefano Olla, Marielle Simon. Macroscopic evolution of mechanical and thermal energy in a harmonic chain with random flip of velocities. Kinetic & Related Models, 2018, 11 (3) : 615-645. doi: 10.3934/krm.2018026

[5]

Mohammed Aassila. On energy decay rate for linear damped systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851

[6]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[7]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[8]

Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. On the one-dimensional version of the dynamical Marguerre-Vlasov system with thermal effects. Conference Publications, 2009, 2009 (Special) : 536-547. doi: 10.3934/proc.2009.2009.536

[9]

Brenton LeMesurier. Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 317-327. doi: 10.3934/dcdss.2008.1.317

[10]

Irena Lasiecka, To Fu Ma, Rodrigo Nunes Monteiro. Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1037-1072. doi: 10.3934/dcdsb.2018141

[11]

Zhuangyi Liu, Ramón Quintanilla. Energy decay rate of a mixed type II and type III thermoelastic system. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1433-1444. doi: 10.3934/dcdsb.2010.14.1433

[12]

Ruy Coimbra Charão, Jáuber Cavalcante Oliveira, Gustavo Alberto Perla Menzala. Energy decay rates of magnetoelastic waves in a bounded conductive medium. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 797-821. doi: 10.3934/dcds.2009.25.797

[13]

Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 609-629. doi: 10.3934/dcdss.2009.2.609

[14]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[15]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[16]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[17]

Per Christian Moan, Jitse Niesen. On an asymptotic method for computing the modified energy for symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1105-1120. doi: 10.3934/dcds.2014.34.1105

[18]

Herbert Gajewski, Jens A. Griepentrog. A descent method for the free energy of multicomponent systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 505-528. doi: 10.3934/dcds.2006.15.505

[19]

Yunkyong Hyon, José A. Carrillo, Qiang Du, Chun Liu. A maximum entropy principle based closure method for macro-micro models of polymeric materials. Kinetic & Related Models, 2008, 1 (2) : 171-184. doi: 10.3934/krm.2008.1.171

[20]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

[Back to Top]