• Previous Article
    On the nonexistence of positive solutions to doubly nonlinear equations for Baouendi-Grushin operators
  • DCDS Home
  • This Issue
  • Next Article
    Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system
2013, 33(11&12): 5177-5187. doi: 10.3934/dcds.2013.33.5177

Coagulation and fragmentation processes with evolving size and shape profiles: A semigroup approach

1. 

Department of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH, United Kingdom, United Kingdom, United Kingdom

Received  October 2011 Revised  August 2012 Published  May 2013

We investigate a class of bivariate coagulation-fragmentation equations. These equations describe the evolution of a system of particles that are characterised not only by a discrete size variable but also by a shape variable which can be either discrete or continuous. Existence and uniqueness of strong solutions to the associated abstract Cauchy problems are established by using the theory of substochastic semigroups of operators.
Citation: Wilson Lamb, Adam McBride, Louise Smith. Coagulation and fragmentation processes with evolving size and shape profiles: A semigroup approach. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5177-5187. doi: 10.3934/dcds.2013.33.5177
References:
[1]

J. Banasiak and L. Arlotti, "Positive Perturbations of Semigroups with Applications,", Springer, (2006).

[2]

J. Banasiak, Global classical solutions of coagulation-fragmentation equations with unbounded coagulation rates,, Nonlinear Analysis : Real World Applications, 13 (2012), 91. doi: 10.1016/j.nonrwa.2011.07.016.

[3]

J. Blum, Dust agglomeration,, Advances in Physics, 55 (2006), 881.

[4]

J. Carr, Asymptotic behaviour of solutions to the coagulation-fragmentation equations I. The strong fragmentation case,, Proc. Roy. Soc. Edinburgh, 121 (1992), 231. doi: 10.1017/S0308210500027888.

[5]

F. P. da Costa, Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation,, J. Math. Anal. Appl., 192 (1995), 892. doi: 10.1006/jmaa.1995.1210.

[6]

J. M. Fernández-Díaz and G. J. Gómez-García, Exact solution of a coagulation equation with a product kernel in the multicomponent case,, Physica D, 239 (2010), 279. doi: 10.1016/j.physd.2009.11.010.

[7]

F. Gruy, Population balance for aggregation coupled with morphology changes,, Colloids and Surfaces A : Physicochemical and Engineering Aspects, 374 (2011), 69. doi: 10.1016/j.colsurfa.2010.11.010.

[8]

M. Kostoglou, A. G. Konstandopoulos and S. K. Friedlander, Bivariate population dynamics simulation of fractal aerosol aggregate coagulation and restructuring,, Aerosol Science, 37 (2006), 1102. doi: 10.1016/j.jaerosci.2005.11.009.

[9]

A. C. McBride, A. L. Smith and W. Lamb, Strongly differentiable solutions of the discrete coagulation-fragmentation equation,, Physica D, 239 (2010), 1436. doi: 10.1016/j.physd.2009.03.013.

[10]

A. L. Smith, W. Lamb, M. Langer and A. C. McBride, Discrete fragmentation with mass loss,, J. Evol. Equ., 12 (2012), 181. doi: 10.1007/s00028-011-0129-8.

[11]

A. L. Smith, "Mathematical Analysis of Discrete Coagulation-Fragmentation Equations,", Ph.D. Thesis, (2011).

[12]

R. D. Vigil and R. M. Ziff, On the scaling theory of two-component aggregation,, Chemical Eng. Sci., 53 (1998), 1725. doi: 10.1016/S0009-2509(98)00016-5.

[13]

J. A. D. Wattis, Exact solutions for cluster-growth kinetics with evolving size and shape profiles,, J. Phys. A : Math. Gen., 39 (2006), 7283. doi: 10.1088/0305-4470/39/23/007.

show all references

References:
[1]

J. Banasiak and L. Arlotti, "Positive Perturbations of Semigroups with Applications,", Springer, (2006).

[2]

J. Banasiak, Global classical solutions of coagulation-fragmentation equations with unbounded coagulation rates,, Nonlinear Analysis : Real World Applications, 13 (2012), 91. doi: 10.1016/j.nonrwa.2011.07.016.

[3]

J. Blum, Dust agglomeration,, Advances in Physics, 55 (2006), 881.

[4]

J. Carr, Asymptotic behaviour of solutions to the coagulation-fragmentation equations I. The strong fragmentation case,, Proc. Roy. Soc. Edinburgh, 121 (1992), 231. doi: 10.1017/S0308210500027888.

[5]

F. P. da Costa, Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation,, J. Math. Anal. Appl., 192 (1995), 892. doi: 10.1006/jmaa.1995.1210.

[6]

J. M. Fernández-Díaz and G. J. Gómez-García, Exact solution of a coagulation equation with a product kernel in the multicomponent case,, Physica D, 239 (2010), 279. doi: 10.1016/j.physd.2009.11.010.

[7]

F. Gruy, Population balance for aggregation coupled with morphology changes,, Colloids and Surfaces A : Physicochemical and Engineering Aspects, 374 (2011), 69. doi: 10.1016/j.colsurfa.2010.11.010.

[8]

M. Kostoglou, A. G. Konstandopoulos and S. K. Friedlander, Bivariate population dynamics simulation of fractal aerosol aggregate coagulation and restructuring,, Aerosol Science, 37 (2006), 1102. doi: 10.1016/j.jaerosci.2005.11.009.

[9]

A. C. McBride, A. L. Smith and W. Lamb, Strongly differentiable solutions of the discrete coagulation-fragmentation equation,, Physica D, 239 (2010), 1436. doi: 10.1016/j.physd.2009.03.013.

[10]

A. L. Smith, W. Lamb, M. Langer and A. C. McBride, Discrete fragmentation with mass loss,, J. Evol. Equ., 12 (2012), 181. doi: 10.1007/s00028-011-0129-8.

[11]

A. L. Smith, "Mathematical Analysis of Discrete Coagulation-Fragmentation Equations,", Ph.D. Thesis, (2011).

[12]

R. D. Vigil and R. M. Ziff, On the scaling theory of two-component aggregation,, Chemical Eng. Sci., 53 (1998), 1725. doi: 10.1016/S0009-2509(98)00016-5.

[13]

J. A. D. Wattis, Exact solutions for cluster-growth kinetics with evolving size and shape profiles,, J. Phys. A : Math. Gen., 39 (2006), 7283. doi: 10.1088/0305-4470/39/23/007.

[1]

Jacek Banasiak. Transport processes with coagulation and strong fragmentation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 445-472. doi: 10.3934/dcdsb.2012.17.445

[2]

Miguel A. Herrero, Marianito R. Rodrigo. Remarks on accessible steady states for some coagulation-fragmentation systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 541-552. doi: 10.3934/dcds.2007.17.541

[3]

Maxime Breden. Applications of improved duality lemmas to the discrete coagulation-fragmentation equations with diffusion. Kinetic & Related Models, 2018, 11 (2) : 279-301. doi: 10.3934/krm.2018014

[4]

Pierre Degond, Maximilian Engel. Numerical approximation of a coagulation-fragmentation model for animal group size statistics. Networks & Heterogeneous Media, 2017, 12 (2) : 217-243. doi: 10.3934/nhm.2017009

[5]

Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563

[6]

Jacek Banasiak, Mustapha Mokhtar-Kharroubi. Universality of dishonesty of substochastic semigroups: Shattering fragmentation and explosive birth-and-death processes. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 529-542. doi: 10.3934/dcdsb.2005.5.529

[7]

Ankik Kumar Giri. On the uniqueness for coagulation and multiple fragmentation equation. Kinetic & Related Models, 2013, 6 (3) : 589-599. doi: 10.3934/krm.2013.6.589

[8]

Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126

[9]

Jacek Banasiak, Wilson Lamb. The discrete fragmentation equation: Semigroups, compactness and asynchronous exponential growth. Kinetic & Related Models, 2012, 5 (2) : 223-236. doi: 10.3934/krm.2012.5.223

[10]

Angela A. Albanese, Xavier Barrachina, Elisabetta M. Mangino, Alfredo Peris. Distributional chaos for strongly continuous semigroups of operators. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2069-2082. doi: 10.3934/cpaa.2013.12.2069

[11]

V. Pata, Sergey Zelik. A result on the existence of global attractors for semigroups of closed operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 481-486. doi: 10.3934/cpaa.2007.6.481

[12]

Bertrand Lods, Mustapha Mokhtar-Kharroubi, Mohammed Sbihi. Spectral properties of general advection operators and weighted translation semigroups. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1469-1492. doi: 10.3934/cpaa.2009.8.1469

[13]

Teemu Lukkari, Mikko Parviainen. Stability of degenerate parabolic Cauchy problems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 201-216. doi: 10.3934/cpaa.2015.14.201

[14]

C. T. Cremins. Existence theorems for weakly inward semilinear operators. Conference Publications, 2003, 2003 (Special) : 200-205. doi: 10.3934/proc.2003.2003.200

[15]

Jin Liang, James H. Liu, Ti-Jun Xiao. Nonlocal Cauchy problems for nonautonomous evolution equations. Communications on Pure & Applied Analysis, 2006, 5 (3) : 529-535. doi: 10.3934/cpaa.2006.5.529

[16]

Qiang Du, Zhan Huang, Richard B. Lehoucq. Nonlocal convection-diffusion volume-constrained problems and jump processes. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 373-389. doi: 10.3934/dcdsb.2014.19.373

[17]

Giuseppe Buttazzo, Lorenzo Freddi. Optimal control problems with weakly converging input operators. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 401-420. doi: 10.3934/dcds.1995.1.401

[18]

Huijun He, Zhaoyang Yin. On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1509-1537. doi: 10.3934/dcds.2017062

[19]

Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems & Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229

[20]

Lorena Bociu, Petronela Radu. Existence of weak solutions to the Cauchy problem of a semilinear wave equation with supercritical interior source and damping. Conference Publications, 2009, 2009 (Special) : 60-71. doi: 10.3934/proc.2009.2009.60

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]