• Previous Article
    Partial reconstruction of the source term in a linear parabolic initial problem with Dirichlet boundary conditions
  • DCDS Home
  • This Issue
  • Next Article
    Multiplicity results for classes of singular problems on an exterior domain
2013, 33(11&12): 5143-5151. doi: 10.3934/dcds.2013.33.5143

Well-posedness results for the Navier-Stokes equations in the rotational framework

1. 

Fachbereich Mathematik, Angewandte Analysis, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt

2. 

LATP UMR 6632, CMI, Technopôle de Château-Gombert, 39 rue Frédéric Joliot-Curie, 13453 Marseille Cedex 13, France

Received  January 2012 Revised  July 2012 Published  May 2013

Consider the Navier-Stokes equations in the rotational framework either on $\mathbb{R}^3$ or on open sets $\Omega \subset \mathbb{R}^3$ subject to Dirichlet boundary conditions. This paper discusses recent well-posedness and ill-posedness results for both situations.
Citation: Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143
References:
[1]

A. Babin, A. Mahalov and B. Nicolaenko, Regularity and integrability for the 3D Euler and Navier-Stokes equations for uniformly rotating fluids,, Asympt. Anal., 15 (1997), 103.

[2]

A. Babin, A. Mahalov and B. Nicolaenko, 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity,, Indiana Univ. Math. J., 50 (2001), 1. doi: 10.1512/iumj.2001.50.2155.

[3]

I. Bejenaru and T. Tao, Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation,, J. Funct. Anal., 223 (2006), 228. doi: 10.1016/j.jfa.2005.08.004.

[4]

J. Bourgain and N. Pavlović, Ill-posedness of the Navier-Stokes equations in a critical space in 3D,, J. Funct. Anal., 255 (2008), 2233. doi: 10.1016/j.jfa.2008.07.008.

[5]

M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations,, Handbook of Mathematical Fluid Dynamics, 3 (2003).

[6]

C. Cao and E. Titi, Global wellposedness of the three dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Annals of Math., 166 (2007), 245. doi: 10.4007/annals.2007.166.245.

[7]

J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, "Mathematical Geophysics,", Oxford University Press, (2006).

[8]

J. A. Goldstein, "Semigroups of Operators and Applications,", Oxford University Press, (1985).

[9]

Y. Giga, K. Inui and S. Matsui, On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data,, Quaderni di Math., 4 (1999), 28.

[10]

Y. Giga, K. Inui, A. Mahalov and S. Matsui, Navier-Stokes equations in a rotating frame in $R^3$ with initial data nondecreasing at infinity,, Hokkaido Math. J., 35 (2006), 321.

[11]

Y. Giga, K. Inui, A. Mahalov and J. Saal, Uniform global solvability of the Navier-Stokes equations for nondecaying data,, Indiana Univ. Math. J., 57 (2008), 2775. doi: 10.1512/iumj.2008.57.3795.

[12]

Y. Giga, K. Inui, A. Mahalov, S. Matsui and J. Saal, Rotating NS-equations in $\mathbbR^3_+$ with initial data nondecreasing at infinity: The Ekman boundary layer problem,, Arch. Rat. Mech. Anal., (2007).

[13]

M. Hieber and S. Monniaux, Global solutions of the Navier-Stokes-Coriolis system in domains,, preprint, (2012).

[14]

M. Hieber and O. Sawada, The Navier-Stokes equations in $\mathbbR^n$ with linearly growing initial data,, Arch. Rational Mech. Anal., 175 (2005), 269. doi: 10.1007/s00205-004-0347-0.

[15]

M. Hieber and Y. Shibata, The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework,, Math. Z., 265 (2010), 481. doi: 10.1007/s00209-009-0525-8.

[16]

T. Iwabuchi and R. Takada, Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type,, preprint, (2011). doi: 10.1016/j.jmaa.2011.02.010.

[17]

T. Iwabuchi and R. Takada, Dispersive effects of the Coriolis force and the local well-posedness for the Navier-Stokes equations in the rotational framework,, preprint, (2011).

[18]

T. Kato, Strong $L^p$-solutions of Navier-Stokes equations in $\mathbbR^n$ with applications to weak solutions,, Math. Z., 187 (1984), 471. doi: 10.1007/BF01174182.

[19]

H. Koch and D. Tataru, Wellposedness for the Navier-Stokes equations,, Advances Math., 157 (2001), 22. doi: 10.1006/aima.2000.1937.

[20]

P. Konieczny and T. Yoneda, On the dispersive effect of the Coriolis force for stationary Navier-Stokes equations,, J. Diff. Equ., 250 (2011), 3859. doi: 10.1016/j.jde.2011.01.003.

[21]

A. Majda, "Introduction to PDEs and Waves for the Atmosphere and Ocean,", Courant Lecture Notes in Math., (2003).

[22]

S. Monniaux, Navier-Stokes equations in arbitrary domains: The Fujita-Kato scheme,, Math. Res. Lett., 13 (2006), 455.

[23]

T. Yoneda, Long-time solvability of the Navier-Stokes equations in a rotating frame with spatially almost periodic large data,, Arch. Rational Mech. Anal., 200 (2011), 225. doi: 10.1007/s00205-010-0360-4.

show all references

References:
[1]

A. Babin, A. Mahalov and B. Nicolaenko, Regularity and integrability for the 3D Euler and Navier-Stokes equations for uniformly rotating fluids,, Asympt. Anal., 15 (1997), 103.

[2]

A. Babin, A. Mahalov and B. Nicolaenko, 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity,, Indiana Univ. Math. J., 50 (2001), 1. doi: 10.1512/iumj.2001.50.2155.

[3]

I. Bejenaru and T. Tao, Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation,, J. Funct. Anal., 223 (2006), 228. doi: 10.1016/j.jfa.2005.08.004.

[4]

J. Bourgain and N. Pavlović, Ill-posedness of the Navier-Stokes equations in a critical space in 3D,, J. Funct. Anal., 255 (2008), 2233. doi: 10.1016/j.jfa.2008.07.008.

[5]

M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations,, Handbook of Mathematical Fluid Dynamics, 3 (2003).

[6]

C. Cao and E. Titi, Global wellposedness of the three dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Annals of Math., 166 (2007), 245. doi: 10.4007/annals.2007.166.245.

[7]

J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, "Mathematical Geophysics,", Oxford University Press, (2006).

[8]

J. A. Goldstein, "Semigroups of Operators and Applications,", Oxford University Press, (1985).

[9]

Y. Giga, K. Inui and S. Matsui, On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data,, Quaderni di Math., 4 (1999), 28.

[10]

Y. Giga, K. Inui, A. Mahalov and S. Matsui, Navier-Stokes equations in a rotating frame in $R^3$ with initial data nondecreasing at infinity,, Hokkaido Math. J., 35 (2006), 321.

[11]

Y. Giga, K. Inui, A. Mahalov and J. Saal, Uniform global solvability of the Navier-Stokes equations for nondecaying data,, Indiana Univ. Math. J., 57 (2008), 2775. doi: 10.1512/iumj.2008.57.3795.

[12]

Y. Giga, K. Inui, A. Mahalov, S. Matsui and J. Saal, Rotating NS-equations in $\mathbbR^3_+$ with initial data nondecreasing at infinity: The Ekman boundary layer problem,, Arch. Rat. Mech. Anal., (2007).

[13]

M. Hieber and S. Monniaux, Global solutions of the Navier-Stokes-Coriolis system in domains,, preprint, (2012).

[14]

M. Hieber and O. Sawada, The Navier-Stokes equations in $\mathbbR^n$ with linearly growing initial data,, Arch. Rational Mech. Anal., 175 (2005), 269. doi: 10.1007/s00205-004-0347-0.

[15]

M. Hieber and Y. Shibata, The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework,, Math. Z., 265 (2010), 481. doi: 10.1007/s00209-009-0525-8.

[16]

T. Iwabuchi and R. Takada, Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type,, preprint, (2011). doi: 10.1016/j.jmaa.2011.02.010.

[17]

T. Iwabuchi and R. Takada, Dispersive effects of the Coriolis force and the local well-posedness for the Navier-Stokes equations in the rotational framework,, preprint, (2011).

[18]

T. Kato, Strong $L^p$-solutions of Navier-Stokes equations in $\mathbbR^n$ with applications to weak solutions,, Math. Z., 187 (1984), 471. doi: 10.1007/BF01174182.

[19]

H. Koch and D. Tataru, Wellposedness for the Navier-Stokes equations,, Advances Math., 157 (2001), 22. doi: 10.1006/aima.2000.1937.

[20]

P. Konieczny and T. Yoneda, On the dispersive effect of the Coriolis force for stationary Navier-Stokes equations,, J. Diff. Equ., 250 (2011), 3859. doi: 10.1016/j.jde.2011.01.003.

[21]

A. Majda, "Introduction to PDEs and Waves for the Atmosphere and Ocean,", Courant Lecture Notes in Math., (2003).

[22]

S. Monniaux, Navier-Stokes equations in arbitrary domains: The Fujita-Kato scheme,, Math. Res. Lett., 13 (2006), 455.

[23]

T. Yoneda, Long-time solvability of the Navier-Stokes equations in a rotating frame with spatially almost periodic large data,, Arch. Rational Mech. Anal., 200 (2011), 225. doi: 10.1007/s00205-010-0360-4.

[1]

Šárka Nečasová. Stokes and Oseen flow with Coriolis force in the exterior domain. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 339-351. doi: 10.3934/dcdss.2008.1.339

[2]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[3]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[4]

Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325

[5]

Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997

[6]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[7]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[8]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[9]

Luigi C. Berselli. An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: Existence and uniqueness of various classes of solutions in the flat boundary case.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 199-219. doi: 10.3934/dcdss.2010.3.199

[10]

Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219

[11]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[12]

Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$-continuous family of strong solutions to the Euler or Navier-Stokes equations with the Navier-Type boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1353-1373. doi: 10.3934/dcds.2010.27.1353

[13]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[14]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[15]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-22. doi: 10.3934/dcdsb.2017149

[16]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[17]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[18]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[19]

Laurence Cherfils, Madalina Petcu. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1419-1449. doi: 10.3934/cpaa.2016.15.1419

[20]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]