# American Institute of Mathematical Sciences

2013, 33(8): 3567-3582. doi: 10.3934/dcds.2013.33.3567

## Explicit upper and lower bounds for the traveling wave solutions of Fisher-Kolmogorov type equations

 1 Dept. de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona 2 Laboratoire de Mathématique et Physique Théorique, C.N.R.S. UMR 7350, Faculté des Sciences et Techniques, Université de Tours, Parc de Grandmont,37200 Tours 3 Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona, Spain

Received  July 2012 Revised  November 2012 Published  January 2013

It is well-known that the existence of traveling wave solutions for reaction-diffusion partial differential equations can be proved by showing the existence of certain heteroclinic orbits for related autonomous planar differential equations. We introduce a method for finding explicit upper and lower bounds of these heteroclinic orbits. In particular, for the classical Fisher-Kolmogorov equation we give rational upper and lower bounds which allow to locate these solutions analytically and with very high accuracy. These results allow one to construct analytical approximate expressions for the traveling wave solutions with a rigorous control of the errors for arbitrary values of the independent variables. These explicit expressions are very simple and tractable for practical purposes. They are constructed with exponential and rational functions.
Citation: Armengol Gasull, Hector Giacomini, Joan Torregrosa. Explicit upper and lower bounds for the traveling wave solutions of Fisher-Kolmogorov type equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3567-3582. doi: 10.3934/dcds.2013.33.3567
##### References:
 [1] M. J. Ablowitz and A. Zeppetella, Explicit solutions of Fisher's equation for a special wave speed,, Bull. Math. Biol., 41 (1979), 835. doi: 10.1016/S0092-8240(79)80020-8. [2] D. G. Aronson and H. F. Weinberger, "Nonlinear Diffusion in Population Genetics, Combustion, and Nerve Pulse Propagation,", Partial Differential Equations and Related Topics (Program, 446 (1974), 5. [3] R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 355. [4] A. Gasull, H. Giacomini and J. Torregrosa, Some results on homoclinic and heteroclinic connections in planar systems,, Nonlinearity, 23 (2010), 2977. doi: 10.1088/0951-7715/23/12/001. [5] A. Goriely, A simple solution to the nonlinear front problem,, Phys. Rev. Lett., 75 (1995), 2047. [6] P. Grindrod, Patterns and Waves, "The Theory and Applications of Reaction-Diffusion Equations,", Clarendon Press, (1991). [7] A. Kolmogorov, I. Petrovskii and N. Piskunov, A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem,, in, 1 (1937), 248. [8] A. C. Newell and J. A. Whitehead, Finite bandwidth, finite amplitude convection,, J. Fluid Mech., 38 (1969), 279. [9] M. R. Rodrigo and R. M. Miura, Exact and approximate traveling waves of reaction-diffusion systems via a variational approach,, Anal. Appl. (Singap.), 9 (2011), 187. doi: 10.1142/S0219530511001807. [10] F. Sánchez-Garduño and P. K. Maini, Travelling wave phenomena in some degenerate reaction-diffusion equations,, J. Differential Equations, 117 (1995), 281. doi: 10.1006/jdeq.1995.1055. [11] F. Sánchez-Garduño and P. K. Maini, Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations,, J. Math. Biol., 35 (1997), 713. doi: 10.1007/s002850050073. [12] L. A. Segel, Distant sidewalls cause slow amplitude modulation of cellular convection,, J. Fluid Mech., 38 (1969), 203. [13] J. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161. doi: 10.1137/S0036144599364296. [14] Y. B. Zeldovich and D. A. Frank-Kamenetskii, A theory of thermal propagation of flame,, Acta Physicochimica URSS 9 (1938), 9 (1938), 341.

show all references

##### References:
 [1] M. J. Ablowitz and A. Zeppetella, Explicit solutions of Fisher's equation for a special wave speed,, Bull. Math. Biol., 41 (1979), 835. doi: 10.1016/S0092-8240(79)80020-8. [2] D. G. Aronson and H. F. Weinberger, "Nonlinear Diffusion in Population Genetics, Combustion, and Nerve Pulse Propagation,", Partial Differential Equations and Related Topics (Program, 446 (1974), 5. [3] R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 355. [4] A. Gasull, H. Giacomini and J. Torregrosa, Some results on homoclinic and heteroclinic connections in planar systems,, Nonlinearity, 23 (2010), 2977. doi: 10.1088/0951-7715/23/12/001. [5] A. Goriely, A simple solution to the nonlinear front problem,, Phys. Rev. Lett., 75 (1995), 2047. [6] P. Grindrod, Patterns and Waves, "The Theory and Applications of Reaction-Diffusion Equations,", Clarendon Press, (1991). [7] A. Kolmogorov, I. Petrovskii and N. Piskunov, A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem,, in, 1 (1937), 248. [8] A. C. Newell and J. A. Whitehead, Finite bandwidth, finite amplitude convection,, J. Fluid Mech., 38 (1969), 279. [9] M. R. Rodrigo and R. M. Miura, Exact and approximate traveling waves of reaction-diffusion systems via a variational approach,, Anal. Appl. (Singap.), 9 (2011), 187. doi: 10.1142/S0219530511001807. [10] F. Sánchez-Garduño and P. K. Maini, Travelling wave phenomena in some degenerate reaction-diffusion equations,, J. Differential Equations, 117 (1995), 281. doi: 10.1006/jdeq.1995.1055. [11] F. Sánchez-Garduño and P. K. Maini, Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations,, J. Math. Biol., 35 (1997), 713. doi: 10.1007/s002850050073. [12] L. A. Segel, Distant sidewalls cause slow amplitude modulation of cellular convection,, J. Fluid Mech., 38 (1969), 203. [13] J. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161. doi: 10.1137/S0036144599364296. [14] Y. B. Zeldovich and D. A. Frank-Kamenetskii, A theory of thermal propagation of flame,, Acta Physicochimica URSS 9 (1938), 9 (1938), 341.
 [1] Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382 [2] Guo Lin, Haiyan Wang. Traveling wave solutions of a reaction-diffusion equation with state-dependent delay. Communications on Pure & Applied Analysis, 2016, 15 (2) : 319-334. doi: 10.3934/cpaa.2016.15.319 [3] Xiaojie Hou, Yi Li, Kenneth R. Meyer. Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 265-290. doi: 10.3934/dcds.2010.26.265 [4] M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079 [5] Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057 [6] Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057 [7] Ming Mei, Yau Shu Wong. Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equation. Mathematical Biosciences & Engineering, 2009, 6 (4) : 743-752. doi: 10.3934/mbe.2009.6.743 [8] Tiberiu Harko, Man Kwong Mak. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences & Engineering, 2015, 12 (1) : 41-69. doi: 10.3934/mbe.2015.12.41 [9] Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229 [10] François Hamel, Jean-Michel Roquejoffre. Heteroclinic connections for multidimensional bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 101-123. doi: 10.3934/dcdss.2011.4.101 [11] Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275 [12] Zhi-Xian Yu, Rong Yuan. Traveling wave fronts in reaction-diffusion systems with spatio-temporal delay and applications. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 709-728. doi: 10.3934/dcdsb.2010.13.709 [13] Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681 [14] Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157 [15] Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267 [16] Elena Trofimchuk, Sergei Trofimchuk. Admissible wavefront speeds for a single species reaction-diffusion equation with delay. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 407-423. doi: 10.3934/dcds.2008.20.407 [17] Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875 [18] Elena Beretta, Cecilia Cavaterra. Identifying a space dependent coefficient in a reaction-diffusion equation. Inverse Problems & Imaging, 2011, 5 (2) : 285-296. doi: 10.3934/ipi.2011.5.285 [19] Michio Urano, Kimie Nakashima, Yoshio Yamada. Transition layers and spikes for a reaction-diffusion equation with bistable nonlinearity. Conference Publications, 2005, 2005 (Special) : 868-877. doi: 10.3934/proc.2005.2005.868 [20] Takanori Ide, Kazuhiro Kurata, Kazunaga Tanaka. Multiple stable patterns for some reaction-diffusion equation in disrupted environments. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 93-116. doi: 10.3934/dcds.2006.14.93

2016 Impact Factor: 1.099