2013, 33(7): 2991-3009. doi: 10.3934/dcds.2013.33.2991

Regular maps with the specification property

1. 

Department of Mathematics, Tokushima University, Tokushima 770-8502

2. 

Department of Mathematics, Utsunomiya University, Utsunomiya 321-8505

3. 

School of Information Environment, Tokyo Denki University, 2-1200 Buseigakuendai, Inzai-shi, Chiba 270-1382, Japan

Received  March 2012 Revised  August 2012 Published  January 2013

Let $f$ be a $C^1$-regular map of a closed $C^{\infty}$ manifold $M$ and $\Lambda$ be a locally maximal closed invariant set of $f$. We show that $f|_{\Lambda}$ satisfies the $C^1$-stable specification property if and only if $\Lambda$ is a hyperbolic elementary set. We also prove that there exists a residual subset $\mathcal{R}$ in the space of $C^1$-regular maps endowed with the $C^1$-topology such that for $f \in \mathcal{R}$, $f|_{\Lambda}$ satisfies the specification property if and only if $\Lambda$ is a hyperbolic elementary set.
Citation: Kazumine Moriyasu, Kazuhiro Sakai, Kenichiro Yamamoto. Regular maps with the specification property. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2991-3009. doi: 10.3934/dcds.2013.33.2991
References:
[1]

N. Aoki, M. Dateyama and M. Komuro, Solenoidal automorphisms with specification,, Monatsh. Math., 93 (1982), 79. doi: 10.1007/BF01301397.

[2]

N. Aoki, K. Moriyasu and N. Sumi, $C^1$-maps having hyperbolic periodic points,, Fund. Math., 169 (2001), 1. doi: 10.4064/fm169-1-1.

[3]

P. Berger and A. Rovella, On the inverse limit stability of endomorphisms,, preprint, ().

[4]

R. Bowen, Periodic points and measures for Axiom A diffeomorphisms,, Trans. Amer. Math. Soc., 154 (1971), 377.

[5]

M. Denker, C. Grillenberger and K. Sigmund, "Ergodic Theory on Compact Spaces,", Lecture Notes in Math., 527 (1976).

[6]

L. J. Díaz, E. R. Pujals and R. Ures, Partial hyperbolicity and robust transitivity,, Acta Math., 183 (1999), 1. doi: 10.1007/BF02392945.

[7]

A. Eizenberg, Y. Kifer and B. Weiss, Large deviations for $\mathbbZ^d$-actions,, Comm. Math. Phys., 164 (1994), 433.

[8]

J. Franks, Necessary conditions for stability of diffeomorphisms,, Trans. Amer. Math. Soc., 158 (1971), 301.

[9]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Math., 583 (1977).

[10]

K. Lee, K. Moriyasu and K. Sakai, $C^1$-stable shadowing diffeomorphisms,, Discrete and Continuous Dynam. Sys., 22 (2008), 683. doi: 10.3934/dcds.2008.22.683.

[11]

K. Lee and X. Wen, Shadowable chain transitive sets of $C^1$-generic diffeomorphisms,, Bull. Korean Math. Soc., 49 (2012), 263. doi: 10.4134/BKMS.2012.49.2.263.

[12]

D. A. Lind, Ergodic group automorphisms and specification,, Ergodic Theory (Proc. Conf., 729 (1979), 93.

[13]

R. Mañé, An ergodic closing lemma,, Annals of Math., 116 (1982), 503. doi: 10.2307/2007021.

[14]

R. Mañé, A proof of the $C^1$ stability conjecture,, Inst. Hautes Etudes Sci. Publ. Math., 66 (1988), 161.

[15]

K. Moriyasu, The ergodic closing lemma for $C^1$ regular maps,, Tokyo J. Math., 15 (1992), 171. doi: 10.3836/tjm/1270130259.

[16]

F. Przytycki, Anosov endomorphisms,, Studia Math., 58 (1976), 249.

[17]

C. Robinson, "Dynamical Systems: Stability, Symbolic Dynamics, and Chaos (2-nd Ed.),", Studies in Advanced Mathematics, (1999).

[18]

A. Rovella and M. Sambarino, The $C^1$ closing lemma for generic $C^1$ endomorphisms,, Ann. I. H. Poincaré AN, 27 (2010), 1461. doi: 10.1016/j.anihpc.2010.09.003.

[19]

K. Sakai, N. Sumi and K. Yamamoto, Diffeomorphisms satisfying the specification property,, Proc. Amer. Math. Soc., 138 (2010), 315. doi: 10.1090/S0002-9939-09-10085-0.

[20]

M. Shub, Endomorphisms of compact differentiable manifolds,, Amer. J. Math., 91 (1969), 175.

[21]

L. Wen, The $C^1$ closing lemma for non-singular endomorphisms,, Ergodic Theory Dynam. Systems, 11 (1991), 393. doi: 10.1017/S0143385700006210.

[22]

L. Wen, Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles,, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 419. doi: 10.1007/s00574-004-0023-x.

show all references

References:
[1]

N. Aoki, M. Dateyama and M. Komuro, Solenoidal automorphisms with specification,, Monatsh. Math., 93 (1982), 79. doi: 10.1007/BF01301397.

[2]

N. Aoki, K. Moriyasu and N. Sumi, $C^1$-maps having hyperbolic periodic points,, Fund. Math., 169 (2001), 1. doi: 10.4064/fm169-1-1.

[3]

P. Berger and A. Rovella, On the inverse limit stability of endomorphisms,, preprint, ().

[4]

R. Bowen, Periodic points and measures for Axiom A diffeomorphisms,, Trans. Amer. Math. Soc., 154 (1971), 377.

[5]

M. Denker, C. Grillenberger and K. Sigmund, "Ergodic Theory on Compact Spaces,", Lecture Notes in Math., 527 (1976).

[6]

L. J. Díaz, E. R. Pujals and R. Ures, Partial hyperbolicity and robust transitivity,, Acta Math., 183 (1999), 1. doi: 10.1007/BF02392945.

[7]

A. Eizenberg, Y. Kifer and B. Weiss, Large deviations for $\mathbbZ^d$-actions,, Comm. Math. Phys., 164 (1994), 433.

[8]

J. Franks, Necessary conditions for stability of diffeomorphisms,, Trans. Amer. Math. Soc., 158 (1971), 301.

[9]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Math., 583 (1977).

[10]

K. Lee, K. Moriyasu and K. Sakai, $C^1$-stable shadowing diffeomorphisms,, Discrete and Continuous Dynam. Sys., 22 (2008), 683. doi: 10.3934/dcds.2008.22.683.

[11]

K. Lee and X. Wen, Shadowable chain transitive sets of $C^1$-generic diffeomorphisms,, Bull. Korean Math. Soc., 49 (2012), 263. doi: 10.4134/BKMS.2012.49.2.263.

[12]

D. A. Lind, Ergodic group automorphisms and specification,, Ergodic Theory (Proc. Conf., 729 (1979), 93.

[13]

R. Mañé, An ergodic closing lemma,, Annals of Math., 116 (1982), 503. doi: 10.2307/2007021.

[14]

R. Mañé, A proof of the $C^1$ stability conjecture,, Inst. Hautes Etudes Sci. Publ. Math., 66 (1988), 161.

[15]

K. Moriyasu, The ergodic closing lemma for $C^1$ regular maps,, Tokyo J. Math., 15 (1992), 171. doi: 10.3836/tjm/1270130259.

[16]

F. Przytycki, Anosov endomorphisms,, Studia Math., 58 (1976), 249.

[17]

C. Robinson, "Dynamical Systems: Stability, Symbolic Dynamics, and Chaos (2-nd Ed.),", Studies in Advanced Mathematics, (1999).

[18]

A. Rovella and M. Sambarino, The $C^1$ closing lemma for generic $C^1$ endomorphisms,, Ann. I. H. Poincaré AN, 27 (2010), 1461. doi: 10.1016/j.anihpc.2010.09.003.

[19]

K. Sakai, N. Sumi and K. Yamamoto, Diffeomorphisms satisfying the specification property,, Proc. Amer. Math. Soc., 138 (2010), 315. doi: 10.1090/S0002-9939-09-10085-0.

[20]

M. Shub, Endomorphisms of compact differentiable manifolds,, Amer. J. Math., 91 (1969), 175.

[21]

L. Wen, The $C^1$ closing lemma for non-singular endomorphisms,, Ergodic Theory Dynam. Systems, 11 (1991), 393. doi: 10.1017/S0143385700006210.

[22]

L. Wen, Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles,, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 419. doi: 10.1007/s00574-004-0023-x.

[1]

Jinjun Li, Min Wu. Generic property of irregular sets in systems satisfying the specification property. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 635-645. doi: 10.3934/dcds.2014.34.635

[2]

Lidong Wang, Hui Wang, Guifeng Huang. Minimal sets and $\omega$-chaos in expansive systems with weak specification property. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1231-1238. doi: 10.3934/dcds.2015.35.1231

[3]

Keonhee Lee, Kazumine Moriyasu, Kazuhiro Sakai. $C^1$-stable shadowing diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 683-697. doi: 10.3934/dcds.2008.22.683

[4]

Flavio Abdenur, Lorenzo J. Díaz. Pseudo-orbit shadowing in the $C^1$ topology. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 223-245. doi: 10.3934/dcds.2007.17.223

[5]

Jinjun Li, Min Wu. Divergence points in systems satisfying the specification property. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 905-920. doi: 10.3934/dcds.2013.33.905

[6]

Lin Wang, Yujun Zhu. Center specification property and entropy for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 469-479. doi: 10.3934/dcds.2016.36.469

[7]

Yunhua Zhou. The local $C^1$-density of stable ergodicity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2621-2629. doi: 10.3934/dcds.2013.33.2621

[8]

Manfred G. Madritsch, Izabela Petrykiewicz. Non-normal numbers in dynamical systems fulfilling the specification property. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4751-4764. doi: 10.3934/dcds.2014.34.4751

[9]

Luis Barreira, Claudia Valls. Existence of stable manifolds for nonuniformly hyperbolic $c^1$ dynamics. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 307-327. doi: 10.3934/dcds.2006.16.307

[10]

S. Yu. Pilyugin, Kazuhiro Sakai, O. A. Tarakanov. Transversality properties and $C^1$-open sets of diffeomorphisms with weak shadowing. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 871-882. doi: 10.3934/dcds.2006.16.871

[11]

Grzegorz Graff, Piotr Nowak-Przygodzki. Fixed point indices of iterations of $C^1$ maps in $R^3$. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 843-856. doi: 10.3934/dcds.2006.16.843

[12]

Lan Wen. A uniform $C^1$ connecting lemma. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 257-265. doi: 10.3934/dcds.2002.8.257

[13]

Hermann Köenig, Vitali Milman. Derivative and entropy: the only derivations from $C^1(RR)$ to $C(RR)$. Electronic Research Announcements, 2011, 18: 54-60. doi: 10.3934/era.2011.18.54

[14]

Christian Bonatti, Sylvain Crovisier and Amie Wilkinson. The centralizer of a $C^1$-generic diffeomorphism is trivial. Electronic Research Announcements, 2008, 15: 33-43. doi: 10.3934/era.2008.15.33

[15]

Martín Sambarino, José L. Vieitez. On $C^1$-persistently expansive homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 465-481. doi: 10.3934/dcds.2006.14.465

[16]

Keonhee Lee, Manseob Lee. Hyperbolicity of $C^1$-stably expansive homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1133-1145. doi: 10.3934/dcds.2010.27.1133

[17]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[18]

Mikko Salo. Stability for solutions of wave equations with $C^{1,1}$ coefficients. Inverse Problems & Imaging, 2007, 1 (3) : 537-556. doi: 10.3934/ipi.2007.1.537

[19]

Christian Bonatti, Sylvain Crovisier, Amie Wilkinson. $C^1$-generic conservative diffeomorphisms have trivial centralizer. Journal of Modern Dynamics, 2008, 2 (2) : 359-373. doi: 10.3934/jmd.2008.2.359

[20]

Raquel Ribeiro. Hyperbolicity and types of shadowing for $C^1$ generic vector fields. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2963-2982. doi: 10.3934/dcds.2014.34.2963

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (4)

[Back to Top]