2013, 33(7): 2757-2776. doi: 10.3934/dcds.2013.33.2757

Pointwise spatial decay of time-dependent Oseen flows: The case of data with noncompact support

1. 

Univ Lille Nord de France, 59000 Lille

Received  April 2012 Revised  November 2012 Published  January 2013

The article deals with the time-dependent Oseen system in a 3D exterior domain. It is shown that the velocity part of a weak solution to that system decays as $\bigl(\, |x| \cdot (1+|x|-x_1) \,\bigr) ^{-1}$, and its spatial gradient as $\bigl(\, |x| \cdot (1+|x|-x_1) \,\bigr) ^{-3/2}$, for $|x|\to \infty $. This result is obtained for data that need not have compact support.
Citation: Paul Deuring. Pointwise spatial decay of time-dependent Oseen flows: The case of data with noncompact support. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2757-2776. doi: 10.3934/dcds.2013.33.2757
References:
[1]

R. A. Adams, "Sobolev Spaces,", Academic Press, (1975).

[2]

K. I. Babenko and M. M. Vasil'ev, On the asymptotic behavior of a steady flow of viscous fluid at some distance from an immersed body,, Prikl. Mat. Meh., 37 (1973), 690.

[3]

H.-O. Bae and B. J. Jin, Estimates of the wake for the 3D Oseen equations,, DCDS-B, 10 (2008), 1. doi: 10.3934/dcdsb.2008.10.1.

[4]

H.-O. Bae and J. Roh, Stability for the 3D Navier-Stokes equations with nonzero far field velocity on exterior domains,, J. Math. Fluid Mech., 14 (2012), 117. doi: 10.1007/s00021-010-0040-z.

[5]

P. Deuring, Exterior stationary Navier-Stokes flows in 3D with nonzero velocity at infinity: asymptotic behaviour of the velocity and its gradient,, IASME Transactions, 6 (2005), 900.

[6]

P. Deuring, The single-layer potential associated with the time-dependent Oseen system,, in, (2006), 117.

[7]

P. Deuring, On volume potentials related to the time-dependent Oseen system,, WSEAS Transactions on Math., 5 (2006), 252.

[8]

P. Deuring, On boundary driven time-dependent Oseen flows,, Banach Center Publications, 81 (2008), 119. doi: 10.4064/bc81-0-8.

[9]

P. Deuring, A potential theoretic approach to the time-dependent Oseen system,, in, (2010), 191. doi: 10.1007/978-3-642-04068-9_12.

[10]

P. Deuring, Spatial decay of time-dependent Oseen flows,, SIAM J. Math. Anal., 41 (2009), 886. doi: 10.1137/080723831.

[11]

P. Deuring, A representation formula for the velocity part of 3D time-dependent Oseen flows,, accepted by J. Math. Fluid Mechanics., ().

[12]

P. Deuring, The Cauchy problem for the homogeneous time-dependent Oseen system in $ \mathbbR^3 $: Spatial decay of the velocity,, to appear in Mathematica Bohemica., ().

[13]

P. Deuring, Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity,, submitted., ().

[14]

P. Deuring and S. Kračmar, Exterior stationary Navier-Stokes flows in 3D with non-zero velocity at infinity: Approximation by flows in bounded domains,, Math. Nachr., 269/270 (2004), 86. doi: 10.1002/mana.200310167.

[15]

P. Deuring, S. Kračmar and Š. Nečasová, On pointwise decay of linearized stationary incompressible viscous flow around rotating and tranlating bodies,, SIAM J. Math. Anal., 43 (2011), 705. doi: 10.1137/100786198.

[16]

Y. Enomoto and Y. Shibata, Local energy decay of solutions to the Oseen equation in the exterior domain,, Indiana Univ. Math. J., 53 (2004), 1291. doi: 10.1512/iumj.2004.53.2463.

[17]

Y. Enomoto and Y. Shibata, On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation,, J. Math. Fluid Mech., 7 (2005), 339. doi: 10.1007/s00021-004-0132-8.

[18]

R. Farwig, The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces,, Math. Z., 211 (1992), 409. doi: 10.1007/BF02571437.

[19]

R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems,, Arch. Rational Mech. Anal., 19 (1965), 363.

[20]

S. Fučik, O. John and A. Kufner, "Function Spaces,", Noordhoff, (1977).

[21]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearised Steady Problems,", (corr. 2nd print.), (1998). doi: 10.1007/978-1-4612-5364-8.

[22]

G. P. Galdi, "An introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems,", Springer, (1994). doi: 10.1007/978-1-4612-5364-8.

[23]

J. G. Heywood, The exterior nonstationary problem for the Navier-Stokes equations,, Acta Math., 129 (1972), 11.

[24]

J. G. Heywood, The Navier-Stokes equations. On the existence, regularity and decay of solutions,, Indiana Univ. Math. J., 29 (1980), 639. doi: 10.1512/iumj.1980.29.29048.

[25]

G. H. Knightly, A Cauchy problem for the Navier-Stokes equations in $ \mathbbR ^n$,, SIAM J. Math. Anal., 3 (1972), 506.

[26]

G. H. Knightly, Some decay properties of solutions of the Navier-Stokes equations,, in, 771 (1979), 287.

[27]

T. Kobayashi and Y. Shibata, On the Oseen equation in three dimensional exterior domains,, Math. Ann., 310 (1998), 1. doi: 10.1007/s002080050134.

[28]

S. Kračmar, A. Novotný and M. Pokorný, Estimates of Oseen kernels in weighted $L^p$ spaces,, J. Math. Soc. Japan, 53 (2001), 59. doi: 10.2969/jmsj/05310059.

[29]

K. Masuda, On the stability of incompressible viscous fluid motions past bodies,, J. Math. Soc. Japan, 27 (1975), 294.

[30]

M. McCracken, The resolvent problem for the Stokes equations on halfspace in $L_p^*$,, SIAM J. Math. Anal., 12 (1981), 201. doi: 10.1137/0512021.

[31]

T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain,, Hiroshima Math. J., 12 (1982), 115.

[32]

R. Mizumachi, On the asymptotic behaviour of incompressible viscous fluid motions past bodies,, J. Math. Soc. Japan, 36 (1984), 497. doi: 10.2969/jmsj/03630497.

[33]

Zongwei Shen, Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders,, American J. Math., 113 (1991), 293. doi: 10.2307/2374910.

[34]

Y. Shibata, On an exterior initial boundary value problem for Navier-Stokes equations,, Quarterly Appl. Math., 57 (1999), 117.

[35]

V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations,, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153.

[36]

S. Takahashi, A weighted equation approach to decay rate estimates for the Navier-Stokes equations,, Nonlinear Anal., 37 (1999), 751. doi: 10.1016/S0362-546X(98)00070-4.

[37]

R. Teman, "Navier-Stokes Equations. Theory and Numerical Analysis,", AMS Chelsea Publishing, (2001).

[38]

K. Yoshida, "Functional Analysis,", (6th ed.), (1980).

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces,", Academic Press, (1975).

[2]

K. I. Babenko and M. M. Vasil'ev, On the asymptotic behavior of a steady flow of viscous fluid at some distance from an immersed body,, Prikl. Mat. Meh., 37 (1973), 690.

[3]

H.-O. Bae and B. J. Jin, Estimates of the wake for the 3D Oseen equations,, DCDS-B, 10 (2008), 1. doi: 10.3934/dcdsb.2008.10.1.

[4]

H.-O. Bae and J. Roh, Stability for the 3D Navier-Stokes equations with nonzero far field velocity on exterior domains,, J. Math. Fluid Mech., 14 (2012), 117. doi: 10.1007/s00021-010-0040-z.

[5]

P. Deuring, Exterior stationary Navier-Stokes flows in 3D with nonzero velocity at infinity: asymptotic behaviour of the velocity and its gradient,, IASME Transactions, 6 (2005), 900.

[6]

P. Deuring, The single-layer potential associated with the time-dependent Oseen system,, in, (2006), 117.

[7]

P. Deuring, On volume potentials related to the time-dependent Oseen system,, WSEAS Transactions on Math., 5 (2006), 252.

[8]

P. Deuring, On boundary driven time-dependent Oseen flows,, Banach Center Publications, 81 (2008), 119. doi: 10.4064/bc81-0-8.

[9]

P. Deuring, A potential theoretic approach to the time-dependent Oseen system,, in, (2010), 191. doi: 10.1007/978-3-642-04068-9_12.

[10]

P. Deuring, Spatial decay of time-dependent Oseen flows,, SIAM J. Math. Anal., 41 (2009), 886. doi: 10.1137/080723831.

[11]

P. Deuring, A representation formula for the velocity part of 3D time-dependent Oseen flows,, accepted by J. Math. Fluid Mechanics., ().

[12]

P. Deuring, The Cauchy problem for the homogeneous time-dependent Oseen system in $ \mathbbR^3 $: Spatial decay of the velocity,, to appear in Mathematica Bohemica., ().

[13]

P. Deuring, Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity,, submitted., ().

[14]

P. Deuring and S. Kračmar, Exterior stationary Navier-Stokes flows in 3D with non-zero velocity at infinity: Approximation by flows in bounded domains,, Math. Nachr., 269/270 (2004), 86. doi: 10.1002/mana.200310167.

[15]

P. Deuring, S. Kračmar and Š. Nečasová, On pointwise decay of linearized stationary incompressible viscous flow around rotating and tranlating bodies,, SIAM J. Math. Anal., 43 (2011), 705. doi: 10.1137/100786198.

[16]

Y. Enomoto and Y. Shibata, Local energy decay of solutions to the Oseen equation in the exterior domain,, Indiana Univ. Math. J., 53 (2004), 1291. doi: 10.1512/iumj.2004.53.2463.

[17]

Y. Enomoto and Y. Shibata, On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation,, J. Math. Fluid Mech., 7 (2005), 339. doi: 10.1007/s00021-004-0132-8.

[18]

R. Farwig, The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces,, Math. Z., 211 (1992), 409. doi: 10.1007/BF02571437.

[19]

R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems,, Arch. Rational Mech. Anal., 19 (1965), 363.

[20]

S. Fučik, O. John and A. Kufner, "Function Spaces,", Noordhoff, (1977).

[21]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearised Steady Problems,", (corr. 2nd print.), (1998). doi: 10.1007/978-1-4612-5364-8.

[22]

G. P. Galdi, "An introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems,", Springer, (1994). doi: 10.1007/978-1-4612-5364-8.

[23]

J. G. Heywood, The exterior nonstationary problem for the Navier-Stokes equations,, Acta Math., 129 (1972), 11.

[24]

J. G. Heywood, The Navier-Stokes equations. On the existence, regularity and decay of solutions,, Indiana Univ. Math. J., 29 (1980), 639. doi: 10.1512/iumj.1980.29.29048.

[25]

G. H. Knightly, A Cauchy problem for the Navier-Stokes equations in $ \mathbbR ^n$,, SIAM J. Math. Anal., 3 (1972), 506.

[26]

G. H. Knightly, Some decay properties of solutions of the Navier-Stokes equations,, in, 771 (1979), 287.

[27]

T. Kobayashi and Y. Shibata, On the Oseen equation in three dimensional exterior domains,, Math. Ann., 310 (1998), 1. doi: 10.1007/s002080050134.

[28]

S. Kračmar, A. Novotný and M. Pokorný, Estimates of Oseen kernels in weighted $L^p$ spaces,, J. Math. Soc. Japan, 53 (2001), 59. doi: 10.2969/jmsj/05310059.

[29]

K. Masuda, On the stability of incompressible viscous fluid motions past bodies,, J. Math. Soc. Japan, 27 (1975), 294.

[30]

M. McCracken, The resolvent problem for the Stokes equations on halfspace in $L_p^*$,, SIAM J. Math. Anal., 12 (1981), 201. doi: 10.1137/0512021.

[31]

T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain,, Hiroshima Math. J., 12 (1982), 115.

[32]

R. Mizumachi, On the asymptotic behaviour of incompressible viscous fluid motions past bodies,, J. Math. Soc. Japan, 36 (1984), 497. doi: 10.2969/jmsj/03630497.

[33]

Zongwei Shen, Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders,, American J. Math., 113 (1991), 293. doi: 10.2307/2374910.

[34]

Y. Shibata, On an exterior initial boundary value problem for Navier-Stokes equations,, Quarterly Appl. Math., 57 (1999), 117.

[35]

V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations,, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153.

[36]

S. Takahashi, A weighted equation approach to decay rate estimates for the Navier-Stokes equations,, Nonlinear Anal., 37 (1999), 751. doi: 10.1016/S0362-546X(98)00070-4.

[37]

R. Teman, "Navier-Stokes Equations. Theory and Numerical Analysis,", AMS Chelsea Publishing, (2001).

[38]

K. Yoshida, "Functional Analysis,", (6th ed.), (1980).

[1]

Šárka Nečasová. Stokes and Oseen flow with Coriolis force in the exterior domain. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 339-351. doi: 10.3934/dcdss.2008.1.339

[2]

Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039

[3]

Marcello D'Abbicco, Ruy Coimbra Charão, Cleverson Roberto da Luz. Sharp time decay rates on a hyperbolic plate model under effects of an intermediate damping with a time-dependent coefficient. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2419-2447. doi: 10.3934/dcds.2016.36.2419

[4]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[5]

Min Zhao, Shengfan Zhou. Random attractor for stochastic Boissonade system with time-dependent deterministic forces and white noises. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1683-1717. doi: 10.3934/dcdsb.2017081

[6]

Shi Jin, Christof Sparber, Zhennan Zhou. On the classical limit of a time-dependent self-consistent field system: Analysis and computation. Kinetic & Related Models, 2017, 10 (1) : 263-298. doi: 10.3934/krm.2017011

[7]

Takeshi Fukao, Masahiro Kubo. Time-dependent obstacle problem in thermohydraulics. Conference Publications, 2009, 2009 (Special) : 240-249. doi: 10.3934/proc.2009.2009.240

[8]

Giuseppe Maria Coclite, Mauro Garavello, Laura V. Spinolo. Optimal strategies for a time-dependent harvesting problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 865-900. doi: 10.3934/dcdss.2018053

[9]

Francesco Di Plinio, Gregory S. Duane, Roger Temam. Time-dependent attractor for the Oscillon equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 141-167. doi: 10.3934/dcds.2011.29.141

[10]

G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Time-dependent systems of generalized Young measures. Networks & Heterogeneous Media, 2007, 2 (1) : 1-36. doi: 10.3934/nhm.2007.2.1

[11]

Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969

[12]

Takeshi Taniguchi. The existence and decay estimates of the solutions to $3$D stochastic Navier-Stokes equations with additive noise in an exterior domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4323-4341. doi: 10.3934/dcds.2014.34.4323

[13]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[14]

Mourad Choulli, Yavar Kian. Stability of the determination of a time-dependent coefficient in parabolic equations. Mathematical Control & Related Fields, 2013, 3 (2) : 143-160. doi: 10.3934/mcrf.2013.3.143

[15]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[16]

Feng Zhou, Chunyou Sun, Xin Li. Dynamics for the damped wave equations on time-dependent domains. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1645-1674. doi: 10.3934/dcdsb.2018068

[17]

María Teresa Cao-Rial, Peregrina Quintela, Carlos Moreno. Numerical solution of a time-dependent Signorini contact problem. Conference Publications, 2007, 2007 (Special) : 201-211. doi: 10.3934/proc.2007.2007.201

[18]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[19]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Periodic solutions for time-dependent subdifferential evolution inclusions. Evolution Equations & Control Theory, 2017, 6 (2) : 277-297. doi: 10.3934/eect.2017015

[20]

Stephen Anco, Maria Rosa, Maria Luz Gandarias. Conservation laws and symmetries of time-dependent generalized KdV equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 607-615. doi: 10.3934/dcdss.2018035

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]