2013, 33(6): 2451-2467. doi: 10.3934/dcds.2013.33.2451

Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts

1. 

Faculty of Mathematics and Computer Science, Jagiellonian University in Kraków, ul. Łojasiewicza 6, 30-348 Kraków, Poland

Received  February 2012 Revised  October 2012 Published  December 2012

Positive topological entropy and distributional chaos are characterized for hereditary shifts. A hereditary shift has positive topological entropy if and only if it is DC$2$-chaotic (or equivalently, DC$3$-chaotic) if and only if it is not uniquely ergodic. A hereditary shift is DC$1$-chaotic if and only if it is not proximal (has more than one minimal set). As every spacing shift and every beta shift is hereditary the results apply to those classes of shifts. Two open problems on topological entropy and distributional chaos of spacing shifts from an article of Banks et al. are solved thanks to this characterization. Moreover, it is shown that a spacing shift $\Omega_P$ has positive topological entropy if and only if $\mathbb{N}\setminus P$ is a set of Poincaré recurrence. Using a result of Kříž an example of a proximal spacing shift with positive entropy is constructed. Connections between spacing shifts and difference sets are revealed and the methods of this paper are used to obtain new proofs of some results on difference sets.
Citation: Dominik Kwietniak. Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2451-2467. doi: 10.3934/dcds.2013.33.2451
References:
[1]

Dawoud Ahmadi Dastjerdi and Maliheh Dabbaghian Amiri, Characterization of entropy for spacing shifts,, Acta Math. Univ. Comenianae, LXXXI (2012), 221.

[2]

Ethan Akin and Sergii Kolyada, Li-Yorke sensitivity,, Nonlinearity, 16 (2003), 1421. doi: 10.1088/0951-7715/16/4/313.

[3]

F. Balibrea, J. Smítal and M. vStefánková, The three versions of distributional chaos,, Chaos Solitons Fractals, 23 (2005), 1581. doi: 10.1016/j.chaos.2004.06.011.

[4]

John Banks, Regular periodic decompositions for topologically transitive maps,, Ergodic Theory Dynam. Systems, 17 (1997), 505. doi: 10.1017/S0143385797069885.

[5]

J. Banks, T. T. D. Nguyen, P. Oprocha and B. Trotta, Dynamics of spacing shifts,, Discrete Continuous Dynam. Systems - A, ().

[6]

Vitaly Bergelson, Ergodic Ramsey theory,, Logic and combinatorics (Arcata, 65 (1987), 63. doi: 10.1090/conm/065/891243.

[7]

A. Blokh and A. Fieldsteel, Sets that force recurrence,, Proc. Amer. Math. Soc., 130 (2002), 3571. doi: 10.1090/S0002-9939-02-06349-9.

[8]

Tomasz Downarowicz, Positive topological entropy implies chaos DC$2$,, to appear in Proc. Amer. Math. Soc., (2011). doi: 10.1017/CBO9780511976155.

[9]

Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation,, Math. Systems Theory, 1 (1967), 1.

[10]

Harry Furstenberg, "Recurrence in Ergodic Theory and Combinatorial Number Theory,", Princeton University Press, (1981).

[11]

Harry Furstenberg, Poincaré recurrence and number theory,, Bull. Amer. Math. Soc. (N.S.), 5 (1981), 211. doi: 10.1090/S0273-0979-1981-14932-6.

[12]

L. Wayne Goodwyn, Some counter-examples in topological entropy,, Topology, 11 (1972), 377.

[13]

Wen Huang, Hanfeng Li and Xiangdong Ye, Family-independence for topological and measurable dynamics,, Trans. Amer. Math Soc., 364 (2012), 5209. doi: 10.1090/S0002-9947-2012-05493-6.

[14]

Víctor Jiménez López and L'ubomir Snoha, Stroboscopical property, equicontinuity and weak mixing,, Iteration theory (ECIT '02), 346 (2004), 235.

[15]

David Kerr and Hanfeng Li, Independence in topological and $C*$-dynamics,, Math. Ann., 338 (2007), 869. doi: 10.1007/s00208-007-0097-z.

[16]

Igor Kříž, Large independent sets in shift-invariant graphs: solution of Bergelson's problem,, Graphs Combin., 3 (1987), 145. doi: 10.1007/BF01788538.

[17]

Dominik Kwietniak and Piotr Oprocha, On weak mixing, minimality and weak disjointness of all iterates,, Erg. Th. Dynam. Syst., 32 (2012), 1661.

[18]

Kenneth Lau and Alan Zame, On weak mixing of cascades,, Math. Systems Theory, 6 (): 307.

[19]

Jian Li, Transitive points via Furstenberg family,, Topology and its Applications, 158 (2011), 2221. doi: 10.1016/j.topol.2011.07.013.

[20]

Jian Li, Dynamical characterization of C-sets and its application,, Fund. Math., 216 (2012), 259. doi: 10.4064/fm216-3-4.

[21]

Douglas Lind and Brian Marcus, "An Introduction to Symbolic Dynamics and Coding,", Cambridge University Press, (1995). doi: 10.1017/CBO9780511626302.

[22]

Jan de Vries, "Elements of Topological Dynamics,", Mathematics and Its Applications, 257 (1993).

[23]

Randall McCutcheon, Three results in recurrence,, Ergodic Theory and Its Connections With Harmonic Analysis (Alexandria, 205 (1995), 349. doi: 10.1017/CBO9780511574818.015.

[24]

Piotr Oprocha, Distributional chaos revisited,, Trans. Amer. Math. Soc., 361 (2009), 4901. doi: 10.1090/S0002-9947-09-04810-7.

[25]

Piotr Oprocha, Minimal systems and distributionally scrambled sets,, preprint, ().

[26]

William Parry, On the $\beta $-expansions of real numbers,, Acta Math. Acad. Sci. Hungar., 11 (1960), 401.

[27]

Rafał Pikuła, On some notions of chaos in dimension zero,, Colloq. Math., 107 (2007), 167. doi: 10.4064/cm107-2-1.

[28]

Alfred Rényi, Representations for real numbers and their ergodic properties,, Acta Math. Acad. Sci. Hungar., 8 (1957), 477.

[29]

B. Schweizer and J. Smítal, Measures of chaos and a spectral decomposition of dynamical systems on the interval,, Trans. Amer. Math. Soc., 344 (1994), 737. doi: 10.2307/2154504.

[30]

Paul C. Shields, "The Ergodic Theory of Discrete Sample Paths,", Graduate Studies in Mathematics, 13 (1996).

[31]

Karl Sigmund, On the distribution of periodic points for $\beta $-shifts,, Monatsh. Math., 82 (1976), 247.

[32]

Klaus Thomsen, On the structure of beta shifts, in, 385 (2005), 321. doi: 10.1090/conm/385/07204.

[33]

Xiangdong Ye and Ruifeng Zhang, On sensitive sets in topological dynamics,, Nonlinearity, 21 (2008), 1601. doi: 10.1088/0951-7715/21/7/012.

[34]

Peter Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982).

show all references

References:
[1]

Dawoud Ahmadi Dastjerdi and Maliheh Dabbaghian Amiri, Characterization of entropy for spacing shifts,, Acta Math. Univ. Comenianae, LXXXI (2012), 221.

[2]

Ethan Akin and Sergii Kolyada, Li-Yorke sensitivity,, Nonlinearity, 16 (2003), 1421. doi: 10.1088/0951-7715/16/4/313.

[3]

F. Balibrea, J. Smítal and M. vStefánková, The three versions of distributional chaos,, Chaos Solitons Fractals, 23 (2005), 1581. doi: 10.1016/j.chaos.2004.06.011.

[4]

John Banks, Regular periodic decompositions for topologically transitive maps,, Ergodic Theory Dynam. Systems, 17 (1997), 505. doi: 10.1017/S0143385797069885.

[5]

J. Banks, T. T. D. Nguyen, P. Oprocha and B. Trotta, Dynamics of spacing shifts,, Discrete Continuous Dynam. Systems - A, ().

[6]

Vitaly Bergelson, Ergodic Ramsey theory,, Logic and combinatorics (Arcata, 65 (1987), 63. doi: 10.1090/conm/065/891243.

[7]

A. Blokh and A. Fieldsteel, Sets that force recurrence,, Proc. Amer. Math. Soc., 130 (2002), 3571. doi: 10.1090/S0002-9939-02-06349-9.

[8]

Tomasz Downarowicz, Positive topological entropy implies chaos DC$2$,, to appear in Proc. Amer. Math. Soc., (2011). doi: 10.1017/CBO9780511976155.

[9]

Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation,, Math. Systems Theory, 1 (1967), 1.

[10]

Harry Furstenberg, "Recurrence in Ergodic Theory and Combinatorial Number Theory,", Princeton University Press, (1981).

[11]

Harry Furstenberg, Poincaré recurrence and number theory,, Bull. Amer. Math. Soc. (N.S.), 5 (1981), 211. doi: 10.1090/S0273-0979-1981-14932-6.

[12]

L. Wayne Goodwyn, Some counter-examples in topological entropy,, Topology, 11 (1972), 377.

[13]

Wen Huang, Hanfeng Li and Xiangdong Ye, Family-independence for topological and measurable dynamics,, Trans. Amer. Math Soc., 364 (2012), 5209. doi: 10.1090/S0002-9947-2012-05493-6.

[14]

Víctor Jiménez López and L'ubomir Snoha, Stroboscopical property, equicontinuity and weak mixing,, Iteration theory (ECIT '02), 346 (2004), 235.

[15]

David Kerr and Hanfeng Li, Independence in topological and $C*$-dynamics,, Math. Ann., 338 (2007), 869. doi: 10.1007/s00208-007-0097-z.

[16]

Igor Kříž, Large independent sets in shift-invariant graphs: solution of Bergelson's problem,, Graphs Combin., 3 (1987), 145. doi: 10.1007/BF01788538.

[17]

Dominik Kwietniak and Piotr Oprocha, On weak mixing, minimality and weak disjointness of all iterates,, Erg. Th. Dynam. Syst., 32 (2012), 1661.

[18]

Kenneth Lau and Alan Zame, On weak mixing of cascades,, Math. Systems Theory, 6 (): 307.

[19]

Jian Li, Transitive points via Furstenberg family,, Topology and its Applications, 158 (2011), 2221. doi: 10.1016/j.topol.2011.07.013.

[20]

Jian Li, Dynamical characterization of C-sets and its application,, Fund. Math., 216 (2012), 259. doi: 10.4064/fm216-3-4.

[21]

Douglas Lind and Brian Marcus, "An Introduction to Symbolic Dynamics and Coding,", Cambridge University Press, (1995). doi: 10.1017/CBO9780511626302.

[22]

Jan de Vries, "Elements of Topological Dynamics,", Mathematics and Its Applications, 257 (1993).

[23]

Randall McCutcheon, Three results in recurrence,, Ergodic Theory and Its Connections With Harmonic Analysis (Alexandria, 205 (1995), 349. doi: 10.1017/CBO9780511574818.015.

[24]

Piotr Oprocha, Distributional chaos revisited,, Trans. Amer. Math. Soc., 361 (2009), 4901. doi: 10.1090/S0002-9947-09-04810-7.

[25]

Piotr Oprocha, Minimal systems and distributionally scrambled sets,, preprint, ().

[26]

William Parry, On the $\beta $-expansions of real numbers,, Acta Math. Acad. Sci. Hungar., 11 (1960), 401.

[27]

Rafał Pikuła, On some notions of chaos in dimension zero,, Colloq. Math., 107 (2007), 167. doi: 10.4064/cm107-2-1.

[28]

Alfred Rényi, Representations for real numbers and their ergodic properties,, Acta Math. Acad. Sci. Hungar., 8 (1957), 477.

[29]

B. Schweizer and J. Smítal, Measures of chaos and a spectral decomposition of dynamical systems on the interval,, Trans. Amer. Math. Soc., 344 (1994), 737. doi: 10.2307/2154504.

[30]

Paul C. Shields, "The Ergodic Theory of Discrete Sample Paths,", Graduate Studies in Mathematics, 13 (1996).

[31]

Karl Sigmund, On the distribution of periodic points for $\beta $-shifts,, Monatsh. Math., 82 (1976), 247.

[32]

Klaus Thomsen, On the structure of beta shifts, in, 385 (2005), 321. doi: 10.1090/conm/385/07204.

[33]

Xiangdong Ye and Ruifeng Zhang, On sensitive sets in topological dynamics,, Nonlinearity, 21 (2008), 1601. doi: 10.1088/0951-7715/21/7/012.

[34]

Peter Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982).

[1]

Michael Schraudner. Projectional entropy and the electrical wire shift. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 333-346. doi: 10.3934/dcds.2010.26.333

[2]

Prof. Dr.rer.nat Widodo. Topological entropy of shift function on the sequences space induced by expanding piecewise linear transformations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 191-208. doi: 10.3934/dcds.2002.8.191

[3]

James Kingsbery, Alex Levin, Anatoly Preygel, Cesar E. Silva. Dynamics of the $p$-adic shift and applications. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 209-218. doi: 10.3934/dcds.2011.30.209

[4]

Michael Baake, John A. G. Roberts, Reem Yassawi. Reversing and extended symmetries of shift spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 835-866. doi: 10.3934/dcds.2018036

[5]

Miklós Horváth. Spectral shift functions in the fixed energy inverse scattering. Inverse Problems & Imaging, 2011, 5 (4) : 843-858. doi: 10.3934/ipi.2011.5.843

[6]

Alberto Bressan, Graziano Guerra. Shift-differentiabilitiy of the flow generated by a conservation law. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 35-58. doi: 10.3934/dcds.1997.3.35

[7]

Van Cyr, Bryna Kra. The automorphism group of a minimal shift of stretched exponential growth. Journal of Modern Dynamics, 2016, 10: 483-495. doi: 10.3934/jmd.2016.10.483

[8]

R. Yamapi, R.S. MacKay. Stability of synchronization in a shift-invariant ring of mutually coupled oscillators. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 973-996. doi: 10.3934/dcdsb.2008.10.973

[9]

Matthias Kunzer. A one-box-shift morphism between Specht modules. Electronic Research Announcements, 2000, 6: 90-94.

[10]

Alexander Zeh, Antonia Wachter. Fast multi-sequence shift-register synthesis with the Euclidean algorithm. Advances in Mathematics of Communications, 2011, 5 (4) : 667-680. doi: 10.3934/amc.2011.5.667

[11]

Stefano Bianchini. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 329-350. doi: 10.3934/dcds.2000.6.329

[12]

Helge Krüger. Asymptotic of gaps at small coupling and applications of the skew-shift Schrödinger operator. Conference Publications, 2011, 2011 (Special) : 874-880. doi: 10.3934/proc.2011.2011.874

[13]

Yi-Chiuan Chen. Bernoulli shift for second order recurrence relations near the anti-integrable limit. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 587-598. doi: 10.3934/dcdsb.2005.5.587

[14]

Xia Ji, Wei Cai. Accurate simulations of 2-D phase shift masks with a generalized discontinuous Galerkin (GDG) method. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 401-415. doi: 10.3934/dcdsb.2011.15.401

[15]

Wei Lin, Jianhong Wu, Guanrong Chen. Generalized snap-back repeller and semi-conjugacy to shift operators of piecewise continuous transformations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 103-119. doi: 10.3934/dcds.2007.19.103

[16]

Piotr Oprocha, Pawel Wilczynski. Distributional chaos via isolating segments. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 347-356. doi: 10.3934/dcdsb.2007.8.347

[17]

Lidong Wang, Xiang Wang, Fengchun Lei, Heng Liu. Mixing invariant extremal distributional chaos. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6533-6538. doi: 10.3934/dcds.2016082

[18]

Piotr Oprocha. Specification properties and dense distributional chaos. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 821-833. doi: 10.3934/dcds.2007.17.821

[19]

Angela A. Albanese, Xavier Barrachina, Elisabetta M. Mangino, Alfredo Peris. Distributional chaos for strongly continuous semigroups of operators. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2069-2082. doi: 10.3934/cpaa.2013.12.2069

[20]

Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]