2013, 33(5): 1773-1807. doi: 10.3934/dcds.2013.33.1773

Formal Poincaré-Dulac renormalization for holomorphic germs

1. 

Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy

2. 

Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano Bicocca, Via Cozzi 53, 20125 Milano, Italy

Received  April 2012 Revised  July 2012 Published  December 2012

We shall describe an alternative approach to a general renormalization procedure for formal self-maps, originally suggested by Chen-Della Dora and Wang-Zheng-Peng, giving formal normal forms simpler than the classical Poincaré-Dulac normal form. As example of application we shall compute a complete list of normal forms for bi-dimensional superattracting germs with non-vanishing quadratic term; in most cases, our normal forms will be the simplest possible ones (in the sense of Wang-Zheng-Peng). We shall also discuss a few examples of renormalization of germs tangent to the identity, revealing interesting second-order resonance phenomena.
Citation: Marco Abate, Jasmin Raissy. Formal Poincaré-Dulac renormalization for holomorphic germs. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1773-1807. doi: 10.3934/dcds.2013.33.1773
References:
[1]

M. Abate, Holomorphic classification of $2$-dimensional quadratic maps tangent to the identity,, Sūkikenkyūsho Kōkyūroku, 1447 (2005), 1.

[2]

M. Abate, Discrete holomorphic local dynamical systems,, in, 1998, (2010), 1.

[3]

M. Abate and F. Tovena, Formal classification of holomorphic maps tangent to the identity,, Discrete Contin. Dyn. Syst. Suppl (2005), Suppl (2005), 1.

[4]

M. Abate and F. Tovena, Poincaré-Bendixson theorems for meromorphic connections and holomorphic homogeneous vector fields,, J. Differential Equations, 251 (2011), 2612. doi: 10.1016/j.jde.2011.05.031.

[5]

A. Algaba, E. Freire and E. Gamero, Hypernormal forms for equilibria of vector fields. Codimension one linear degeneracies,, Rocky Mountain J. Math. 29 (1999), 29 (1999), 13. doi: 10.1216/rmjm/1181071677.

[6]

A. Algaba, E. Freire, E. Gamero and C. Garcia, Quasi-homogeneous normal forms,, J. Comput. Appl. Math. 150 (2003), 150 (2003), 193. doi: 10.1016/S0377-0427(02)00660-X.

[7]

V. I. Arnold, "Geometrical Methods In The Theory Of Ordinary Differential Equations,", Springer Verlag, (1988).

[8]

A. Baider, Unique normal forms for vector fields and Hamiltonians,, J. Differential Equations, 78 (1989), 33. doi: 10.1016/0022-0396(89)90074-0.

[9]

A. Baider and R. Churchill, Unique normal forms for planar vector fields,, Math. Z., 199 (): 303.

[10]

A. Baider and J. Sanders, Further reduction of the Takens-Bogdanov normal form,, J. Differential Equations, 99 (1992), 205. doi: 10.1016/0022-0396(92)90022-F.

[11]

G. R. Belitskii, Invariant normal forms of formal series,, Functional Anal. Appl., 13 (1979), 46.

[12]

G. R. Belitskii, Normal forms relative to a filtering action of a group,, Trans. Moscow Math. Soc., 40 (1979), 3.

[13]

F. Bracci and D. Zaitsev, Dynamics of one-resonant biholomorphisms,, J. Eur. Math. Soc. , ().

[14]

A. D. Brjuno, Analytic form of differential equations. I,, Trans. Moscow Math. Soc. 25 (1971), 25 (1971), 131.

[15]

A. D. Brjuno, Analytic form of differential equations. II,, Trans. Moscow Math. Soc. 26 (1972), 26 (1972), 199.

[16]

H. Broer, Formal normal form theorems for vector fields and some consequences for bifurcations in the volume preserving case,, in, 898, (1980), 54.

[17]

H. Cartan, "Cours de calcul différentiel,", Hermann, (1977).

[18]

G. T. Chen and J. Della Dora, Normal forms for differentiable maps near a fixed point,, Numer. Algorithms, 22 (1999), 213.

[19]

G. T. Chen and J. Della Dora, Further reductions of normal forms for dynamical systems,, J. Differential Equations, 166 (2000), 79.

[20]

J. Écalle, "Les Fonctions Résurgentes. Tome III: L'Équation Du Pont Et La Classification Analytique Des Objects Locaux,", Publ. Math. Orsay, 85-05, (1985), 85.

[21]

J. Écalle, Iteration and analytic classification of local diffeomorphisms of $\mathbbC^v$,, in, 1163, (1984), 41.

[22]

E. Fischer, Über die differentiationsprozesse der algebra,, J. für Math., 148 (1917), 1.

[23]

G. Gaeta, Further reduction of Poincaré-Dulac normal forms in symmetric systems,, Cubo, 9 (2007), 1.

[24]

A. Giorgilli and A. Posilicano, Estimates for normal forms of differential equations near an equilibrium point,, Z. Angew. Math. Phys., 39 (1988), 713. doi: 10.1007/BF00948732.

[25]

F. Ichikawa, On finite determinacy of formal vector fields,, Invent. Math. 70 (1982/83), 70 (): 45.

[26]

F. Ichikawa, Classification of finitely determined singularities of formal vector fields on the plane,, Tokyo J. Math. 8 (1985), 8 (1985), 463. doi: 10.3836/tjm/1270151227.

[27]

H. Kokubu, H. Oka and D. Wang, Linear grading function and further reduction of normal forms,, J. Differential Equations, 132 (1996), 293. doi: 10.1006/jdeq.1996.0181.

[28]

E. Lombardi and L. Stolovitch, Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation,, Ann. Sci. Éc. Norm. Supér. 43 (2010), 43 (2010), 659.

[29]

D. Malonza and J. Murdock, An improved theory of asymptotic unfoldings,, J. Differential Equations, 247 (2009), 685.

[30]

J. Murdock, "Normal Forms And Unfoldings For Local Dynamical Systems," Springer Verlag,, Berlin, (2003).

[31]

J. Murdock, Hypernormal form theory: Foundations and algorithms,, J. Differential Equations, 205 (2004), 424.

[32]

J. Murdock and J. A. Sanders, A new transvectant algorithm for nilpotent normal forms,, J. Differential Equations, 238 (2007), 234.

[33]

J. Raissy, Torus actions in the normalization problem,, J. Geom. Anal. 20 (2010), 20 (2010), 472.

[34]

J. Raissy, Brjuno conditions for linearization in presence of resonances,, in, (2010), 201.

[35]

H. Rüssmann, Stability of elliptic fixed points of analytic area-preserving mappings under the Bruno condition,, Ergodic Theory Dynam. Systems, 22 (2002), 1551.

[36]

J. A. Sanders, Normal form theory and spectral sequences,, J. Differential Equations, 192 (2003), 536.

[37]

D. Wang, M. Zheng and J. Peng, Further reduction of normal forms of formal maps,, C. R. Math. Acad. Sci. Paris, 343 (2006), 657.

[38]

D. Wang, M. Zheng and J. Peng, Further reduction of normal forms and unique normal forms of smooth maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2008), 18 (2008), 803. doi: 10.1142/S0218127408020665.

[39]

P. Yu and Y. Yuan, The simplest normal form for the singularity of a pure imaginary pair and a zero eigenvalue,, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 8 (2001), 219.

show all references

References:
[1]

M. Abate, Holomorphic classification of $2$-dimensional quadratic maps tangent to the identity,, Sūkikenkyūsho Kōkyūroku, 1447 (2005), 1.

[2]

M. Abate, Discrete holomorphic local dynamical systems,, in, 1998, (2010), 1.

[3]

M. Abate and F. Tovena, Formal classification of holomorphic maps tangent to the identity,, Discrete Contin. Dyn. Syst. Suppl (2005), Suppl (2005), 1.

[4]

M. Abate and F. Tovena, Poincaré-Bendixson theorems for meromorphic connections and holomorphic homogeneous vector fields,, J. Differential Equations, 251 (2011), 2612. doi: 10.1016/j.jde.2011.05.031.

[5]

A. Algaba, E. Freire and E. Gamero, Hypernormal forms for equilibria of vector fields. Codimension one linear degeneracies,, Rocky Mountain J. Math. 29 (1999), 29 (1999), 13. doi: 10.1216/rmjm/1181071677.

[6]

A. Algaba, E. Freire, E. Gamero and C. Garcia, Quasi-homogeneous normal forms,, J. Comput. Appl. Math. 150 (2003), 150 (2003), 193. doi: 10.1016/S0377-0427(02)00660-X.

[7]

V. I. Arnold, "Geometrical Methods In The Theory Of Ordinary Differential Equations,", Springer Verlag, (1988).

[8]

A. Baider, Unique normal forms for vector fields and Hamiltonians,, J. Differential Equations, 78 (1989), 33. doi: 10.1016/0022-0396(89)90074-0.

[9]

A. Baider and R. Churchill, Unique normal forms for planar vector fields,, Math. Z., 199 (): 303.

[10]

A. Baider and J. Sanders, Further reduction of the Takens-Bogdanov normal form,, J. Differential Equations, 99 (1992), 205. doi: 10.1016/0022-0396(92)90022-F.

[11]

G. R. Belitskii, Invariant normal forms of formal series,, Functional Anal. Appl., 13 (1979), 46.

[12]

G. R. Belitskii, Normal forms relative to a filtering action of a group,, Trans. Moscow Math. Soc., 40 (1979), 3.

[13]

F. Bracci and D. Zaitsev, Dynamics of one-resonant biholomorphisms,, J. Eur. Math. Soc. , ().

[14]

A. D. Brjuno, Analytic form of differential equations. I,, Trans. Moscow Math. Soc. 25 (1971), 25 (1971), 131.

[15]

A. D. Brjuno, Analytic form of differential equations. II,, Trans. Moscow Math. Soc. 26 (1972), 26 (1972), 199.

[16]

H. Broer, Formal normal form theorems for vector fields and some consequences for bifurcations in the volume preserving case,, in, 898, (1980), 54.

[17]

H. Cartan, "Cours de calcul différentiel,", Hermann, (1977).

[18]

G. T. Chen and J. Della Dora, Normal forms for differentiable maps near a fixed point,, Numer. Algorithms, 22 (1999), 213.

[19]

G. T. Chen and J. Della Dora, Further reductions of normal forms for dynamical systems,, J. Differential Equations, 166 (2000), 79.

[20]

J. Écalle, "Les Fonctions Résurgentes. Tome III: L'Équation Du Pont Et La Classification Analytique Des Objects Locaux,", Publ. Math. Orsay, 85-05, (1985), 85.

[21]

J. Écalle, Iteration and analytic classification of local diffeomorphisms of $\mathbbC^v$,, in, 1163, (1984), 41.

[22]

E. Fischer, Über die differentiationsprozesse der algebra,, J. für Math., 148 (1917), 1.

[23]

G. Gaeta, Further reduction of Poincaré-Dulac normal forms in symmetric systems,, Cubo, 9 (2007), 1.

[24]

A. Giorgilli and A. Posilicano, Estimates for normal forms of differential equations near an equilibrium point,, Z. Angew. Math. Phys., 39 (1988), 713. doi: 10.1007/BF00948732.

[25]

F. Ichikawa, On finite determinacy of formal vector fields,, Invent. Math. 70 (1982/83), 70 (): 45.

[26]

F. Ichikawa, Classification of finitely determined singularities of formal vector fields on the plane,, Tokyo J. Math. 8 (1985), 8 (1985), 463. doi: 10.3836/tjm/1270151227.

[27]

H. Kokubu, H. Oka and D. Wang, Linear grading function and further reduction of normal forms,, J. Differential Equations, 132 (1996), 293. doi: 10.1006/jdeq.1996.0181.

[28]

E. Lombardi and L. Stolovitch, Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation,, Ann. Sci. Éc. Norm. Supér. 43 (2010), 43 (2010), 659.

[29]

D. Malonza and J. Murdock, An improved theory of asymptotic unfoldings,, J. Differential Equations, 247 (2009), 685.

[30]

J. Murdock, "Normal Forms And Unfoldings For Local Dynamical Systems," Springer Verlag,, Berlin, (2003).

[31]

J. Murdock, Hypernormal form theory: Foundations and algorithms,, J. Differential Equations, 205 (2004), 424.

[32]

J. Murdock and J. A. Sanders, A new transvectant algorithm for nilpotent normal forms,, J. Differential Equations, 238 (2007), 234.

[33]

J. Raissy, Torus actions in the normalization problem,, J. Geom. Anal. 20 (2010), 20 (2010), 472.

[34]

J. Raissy, Brjuno conditions for linearization in presence of resonances,, in, (2010), 201.

[35]

H. Rüssmann, Stability of elliptic fixed points of analytic area-preserving mappings under the Bruno condition,, Ergodic Theory Dynam. Systems, 22 (2002), 1551.

[36]

J. A. Sanders, Normal form theory and spectral sequences,, J. Differential Equations, 192 (2003), 536.

[37]

D. Wang, M. Zheng and J. Peng, Further reduction of normal forms of formal maps,, C. R. Math. Acad. Sci. Paris, 343 (2006), 657.

[38]

D. Wang, M. Zheng and J. Peng, Further reduction of normal forms and unique normal forms of smooth maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2008), 18 (2008), 803. doi: 10.1142/S0218127408020665.

[39]

P. Yu and Y. Yuan, The simplest normal form for the singularity of a pure imaginary pair and a zero eigenvalue,, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 8 (2001), 219.

[1]

Marco Abate, Francesca Tovena. Formal normal forms for holomorphic maps tangent to the identity. Conference Publications, 2005, 2005 (Special) : 1-10. doi: 10.3934/proc.2005.2005.1

[2]

João Lopes Dias. Brjuno condition and renormalization for Poincaré flows. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 641-656. doi: 10.3934/dcds.2006.15.641

[3]

Sze-Bi Hsu, Bernold Fiedler, Hsiu-Hau Lin. Classification of potential flows under renormalization group transformation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 437-446. doi: 10.3934/dcdsb.2016.21.437

[4]

Ricardo Miranda Martins. Formal equivalence between normal forms of reversible and hamiltonian dynamical systems. Communications on Pure & Applied Analysis, 2014, 13 (2) : 703-713. doi: 10.3934/cpaa.2014.13.703

[5]

Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363

[6]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

[7]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[8]

Denis Gaidashev, Tomas Johnson. Spectral properties of renormalization for area-preserving maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3651-3675. doi: 10.3934/dcds.2016.36.3651

[9]

Yiming Ding. Renormalization and $\alpha$-limit set for expanding Lorenz maps. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 979-999. doi: 10.3934/dcds.2011.29.979

[10]

B. Fernandez, E. Ugalde, J. Urías. Spectrum of dimensions for Poincaré recurrences of Markov maps. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 835-849. doi: 10.3934/dcds.2002.8.835

[11]

Changyou Wang, Shenzhou Zheng. Energy identity for a class of approximate biharmonic maps into sphere in dimension four. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 861-878. doi: 10.3934/dcds.2013.33.861

[12]

Virginie De Witte, Willy Govaerts. Numerical computation of normal form coefficients of bifurcations of odes in MATLAB. Conference Publications, 2011, 2011 (Special) : 362-372. doi: 10.3934/proc.2011.2011.362

[13]

Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2561-2593. doi: 10.3934/dcdsb.2012.17.2561

[14]

John Burke, Edgar Knobloch. Normal form for spatial dynamics in the Swift-Hohenberg equation. Conference Publications, 2007, 2007 (Special) : 170-180. doi: 10.3934/proc.2007.2007.170

[15]

Hans Koch. On hyperbolicity in the renormalization of near-critical area-preserving maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7029-7056. doi: 10.3934/dcds.2016106

[16]

V. Afraimovich, Jean-René Chazottes, Benoît Saussol. Pointwise dimensions for Poincaré recurrences associated with maps and special flows. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 263-280. doi: 10.3934/dcds.2003.9.263

[17]

Stefan Siegmund. Normal form of Duffing-van der Pol oscillator under nonautonomous parametric perturbations. Conference Publications, 2001, 2001 (Special) : 357-361. doi: 10.3934/proc.2001.2001.357

[18]

Svetlana Bunimovich-Mendrazitsky, Yakov Goltser. Use of quasi-normal form to examine stability of tumor-free equilibrium in a mathematical model of bcg treatment of bladder cancer. Mathematical Biosciences & Engineering, 2011, 8 (2) : 529-547. doi: 10.3934/mbe.2011.8.529

[19]

Àngel Jorba, Pau Rabassa, Joan Carles Tatjer. Local study of a renormalization operator for 1D maps under quasiperiodic forcing. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1171-1188. doi: 10.3934/dcdss.2016047

[20]

Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalization of two-dimensional piecewise linear maps: Abundance of 2-D strange attractors. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 941-966. doi: 10.3934/dcds.2018040

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]