2013, 33(4): 1297-1311. doi: 10.3934/dcds.2013.33.1297

Admissibility versus nonuniform exponential behavior for noninvertible cocycles

1. 

Departamento de Matemática, Instituto Superior Técnico, UTL, 1049-001 Lisboa, Portugal

2. 

Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

Received  October 2011 Revised  January 2012 Published  October 2012

We study the relation between the notions of exponential dichotomy and admissibility for a nonautonomous dynamics with discrete time. More precisely, we consider $\mathbb{Z}$-cocycles defined by a sequence of linear operators in a Banach space, and we give criteria for the existence of an exponential dichotomy in terms of the admissibility of the pairs $(\ell^p,\ell^q)$ of spaces of sequences, with $p\le q$ and $(p,q)\ne(1,\infty)$. We extend the existing results in several directions. Namely, we consider the general case of nonuniform exponential dichotomies; we consider $\mathbb{Z}$-cocycles and not only $\mathbb{N}$-cocycles; and we consider exponential dichotomies that need not be invertible in the stable direction. We also exhibit a collection of admissible pairs of spaces of sequences for any nonuniform exponential dichotomy.
Citation: Luis Barreira, Claudia Valls. Admissibility versus nonuniform exponential behavior for noninvertible cocycles. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1297-1311. doi: 10.3934/dcds.2013.33.1297
References:
[1]

L. Barreira and Ya. Pesin, "Lyapunov Exponents and Smooth Ergodic Theory,", University Lecture Series, 23 (2002).

[2]

L. Barreira and C. Valls, "Stability of Nonautonomous Differential Equations,", Lect. Notes in Math., 1926 (2008).

[3]

C. Chicone and Yu. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations,", Mathematical Surveys and Monographs, 70 (1999).

[4]

Ju. Dalec$'$kiĭ and M. Kreĭn, "Stability of Solutions of Differential Equations in Banach Space,", Translations of Mathematical Monographs, 43 (1974).

[5]

N. Huy, Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line,, J. Funct. Anal., 235 (2006), 330. doi: 10.1016/j.jfa.2005.11.002.

[6]

B. Levitan and V. Zhikov, "Almost Periodic Functions and Differential Equations,", Cambridge University Press, (1982).

[7]

J. Massera and J. Schäffer, Linear differential equations and functional analysis. I,, Ann. of Math., 67 (1958), 517. doi: 10.2307/1969871.

[8]

J. Massera and J. Schäffer, "Linear Differential Equations and Function Spaces,", Pure and Applied Mathematics, 21 (1966).

[9]

M. Megan, B. Sasu and A. Sasu, On nonuniform exponential dichotomy of evolution operators in Banach spaces,, Integral Equations Operator Theory, 44 (2002), 71. doi: 10.1007/BF01197861.

[10]

N. Minh and N. Huy, Characterizations of dichotomies of evolution equations on the half-line,, J. Math. Anal. Appl., 261 (2001), 28. doi: 10.1006/jmaa.2001.7450.

[11]

P. Ngoc and T. Naito, New characterizations of exponential dichotomy and exponential stability of linear difference equations,, J. Difference Equ. Appl., 11 (2005), 909. doi: 10.1080/00423110500211947.

[12]

O. Perron, Die Stabilitätsfrage bei Differentialgleichungen,, Math. Z., 32 (1930), 703. doi: 10.1007/BF01194662.

[13]

P. Preda and M. Megan, Nonuniform dichotomy of evolutionary processes in Banach spaces,, Bull. Austral. Math. Soc., 27 (1983), 31. doi: 10.1017/S0004972700011473.

[14]

P. Preda, A. Pogan and C. Preda, $(L^p,L^q)$-admissibility and exponential dichotomy of evolutionary processes on the half-line,, Integral Equations Operator Theory, 49 (2004), 405. doi: 10.1007/s00020-002-1268-7.

[15]

P. Preda, A. Pogan and C. Preda, Schäffer spaces and uniform exponential stability of linear skew-product semiflows,, J. Differential Equations, 212 (2005), 191. doi: 10.1016/j.jde.2004.07.019.

[16]

P. Preda, A. Pogan and C. Preda, Schäffer spaces and exponential dichotomy for evolutionary processes,, J. Differential Equations, 230 (2006), 378. doi: 10.1016/j.jde.2006.02.004.

[17]

A. Sasu and B. Sasu, Discrete admissibility, $l^p$-spaces and exponential dichotomy on the real line,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 13 (2006), 551.

[18]

A. Sasu and B. Sasu, Exponential dichotomy and $(l^p,l^q)$-admissibility on the half-line,, J. Math. Anal. Appl., 316 (2006), 397. doi: 10.1016/j.jmaa.2005.04.047.

[19]

N. Van Minh, F. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line,, Integral Equations Operator Theory, 32 (1998), 332. doi: 10.1007/BF01203774.

show all references

References:
[1]

L. Barreira and Ya. Pesin, "Lyapunov Exponents and Smooth Ergodic Theory,", University Lecture Series, 23 (2002).

[2]

L. Barreira and C. Valls, "Stability of Nonautonomous Differential Equations,", Lect. Notes in Math., 1926 (2008).

[3]

C. Chicone and Yu. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations,", Mathematical Surveys and Monographs, 70 (1999).

[4]

Ju. Dalec$'$kiĭ and M. Kreĭn, "Stability of Solutions of Differential Equations in Banach Space,", Translations of Mathematical Monographs, 43 (1974).

[5]

N. Huy, Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line,, J. Funct. Anal., 235 (2006), 330. doi: 10.1016/j.jfa.2005.11.002.

[6]

B. Levitan and V. Zhikov, "Almost Periodic Functions and Differential Equations,", Cambridge University Press, (1982).

[7]

J. Massera and J. Schäffer, Linear differential equations and functional analysis. I,, Ann. of Math., 67 (1958), 517. doi: 10.2307/1969871.

[8]

J. Massera and J. Schäffer, "Linear Differential Equations and Function Spaces,", Pure and Applied Mathematics, 21 (1966).

[9]

M. Megan, B. Sasu and A. Sasu, On nonuniform exponential dichotomy of evolution operators in Banach spaces,, Integral Equations Operator Theory, 44 (2002), 71. doi: 10.1007/BF01197861.

[10]

N. Minh and N. Huy, Characterizations of dichotomies of evolution equations on the half-line,, J. Math. Anal. Appl., 261 (2001), 28. doi: 10.1006/jmaa.2001.7450.

[11]

P. Ngoc and T. Naito, New characterizations of exponential dichotomy and exponential stability of linear difference equations,, J. Difference Equ. Appl., 11 (2005), 909. doi: 10.1080/00423110500211947.

[12]

O. Perron, Die Stabilitätsfrage bei Differentialgleichungen,, Math. Z., 32 (1930), 703. doi: 10.1007/BF01194662.

[13]

P. Preda and M. Megan, Nonuniform dichotomy of evolutionary processes in Banach spaces,, Bull. Austral. Math. Soc., 27 (1983), 31. doi: 10.1017/S0004972700011473.

[14]

P. Preda, A. Pogan and C. Preda, $(L^p,L^q)$-admissibility and exponential dichotomy of evolutionary processes on the half-line,, Integral Equations Operator Theory, 49 (2004), 405. doi: 10.1007/s00020-002-1268-7.

[15]

P. Preda, A. Pogan and C. Preda, Schäffer spaces and uniform exponential stability of linear skew-product semiflows,, J. Differential Equations, 212 (2005), 191. doi: 10.1016/j.jde.2004.07.019.

[16]

P. Preda, A. Pogan and C. Preda, Schäffer spaces and exponential dichotomy for evolutionary processes,, J. Differential Equations, 230 (2006), 378. doi: 10.1016/j.jde.2006.02.004.

[17]

A. Sasu and B. Sasu, Discrete admissibility, $l^p$-spaces and exponential dichotomy on the real line,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 13 (2006), 551.

[18]

A. Sasu and B. Sasu, Exponential dichotomy and $(l^p,l^q)$-admissibility on the half-line,, J. Math. Anal. Appl., 316 (2006), 397. doi: 10.1016/j.jmaa.2005.04.047.

[19]

N. Van Minh, F. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line,, Integral Equations Operator Theory, 32 (1998), 332. doi: 10.1007/BF01203774.

[1]

Luis Barreira, Claudia Valls. Nonuniform exponential dichotomies and admissibility. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 39-53. doi: 10.3934/dcds.2011.30.39

[2]

Luis Barreira, Claudia Valls. Characterization of stable manifolds for nonuniform exponential dichotomies. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1025-1046. doi: 10.3934/dcds.2008.21.1025

[3]

Luis Barreira, Claudia Valls. Noninvertible cocycles: Robustness of exponential dichotomies. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4111-4131. doi: 10.3934/dcds.2012.32.4111

[4]

Christian Pötzsche. Smooth roughness of exponential dichotomies, revisited. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 853-859. doi: 10.3934/dcdsb.2015.20.853

[5]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[6]

Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential trichotomy of dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2929-2962. doi: 10.3934/dcds.2014.34.2929

[7]

Mihail Megan, Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential dichotomy for evolution families. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 383-397. doi: 10.3934/dcds.2003.9.383

[8]

Adina Luminiţa Sasu, Bogdan Sasu. Exponential trichotomy and $(r, p)$-admissibility for discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3199-3220. doi: 10.3934/dcdsb.2017170

[9]

Luis Barreira, Davor Dragičević, Claudia Valls. From one-sided dichotomies to two-sided dichotomies. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2817-2844. doi: 10.3934/dcds.2015.35.2817

[10]

Luis Barreira, Claudia Valls. Growth rates and nonuniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 509-528. doi: 10.3934/dcds.2008.22.509

[11]

Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227

[12]

Jana Rodriguez Hertz. Genericity of nonuniform hyperbolicity in dimension 3. Journal of Modern Dynamics, 2012, 6 (1) : 121-138. doi: 10.3934/jmd.2012.6.121

[13]

Davor Dragičević. Admissibility, a general type of Lipschitz shadowing and structural stability. Communications on Pure & Applied Analysis, 2015, 14 (3) : 861-880. doi: 10.3934/cpaa.2015.14.861

[14]

Luis Barreira, Claudia Valls. Center manifolds for nonuniform trichotomies and arbitrary growth rates. Communications on Pure & Applied Analysis, 2010, 9 (3) : 643-654. doi: 10.3934/cpaa.2010.9.643

[15]

Hassan Emamirad, Arnaud Rougirel. A functional calculus approach for the rational approximation with nonuniform partitions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 955-972. doi: 10.3934/dcds.2008.22.955

[16]

Boris Kalinin, Anatole Katok and Federico Rodriguez Hertz. New progress in nonuniform measure and cocycle rigidity. Electronic Research Announcements, 2008, 15: 79-92. doi: 10.3934/era.2008.15.79

[17]

Luis Barreira, Claudia Valls. Regularity of center manifolds under nonuniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 55-76. doi: 10.3934/dcds.2011.30.55

[18]

António J.G. Bento, Nicolae Lupa, Mihail Megan, César M. Silva. Integral conditions for nonuniform $μ$-dichotomy on the half-line. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3063-3077. doi: 10.3934/dcdsb.2017163

[19]

Giovanni Forni. A geometric criterion for the nonuniform hyperbolicity of the Kontsevich--Zorich cocycle. Journal of Modern Dynamics, 2011, 5 (2) : 355-395. doi: 10.3934/jmd.2011.5.355

[20]

Mi-Ho Giga, Yoshikazu Giga. A subdifferential interpretation of crystalline motion under nonuniform driving force. Conference Publications, 1998, 1998 (Special) : 276-287. doi: 10.3934/proc.1998.1998.276

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]