2012, 32(3): 847-865. doi: 10.3934/dcds.2012.32.847

Global solutions for a semilinear heat equation in the exterior domain of a compact set

1. 

Mathematical Institute, Tohoku University, Aoba, Sendai 980-8578

2. 

Faculty of Symbiotic Systems Science, Fukushima University, Kanayagawa, Fukushima 960-1269, Japan

Received  September 2010 Revised  February 2011 Published  October 2011

Let $u$ be a global in time solution of the Cauchy-Dirichlet problem for a semilinear heat equation, $$ \left\{ \begin{array}{ll} \partial_t u=\Delta u+u^p,\quad & x\in\Omega,\,\, t>0,\\ u=0,\quad & x\in\partial\Omega,\,\,t>0,\\ u(x,0)=\phi(x)\ge 0,\quad & x\in\Omega, \end{array} \right. $$ where $\partial_t=\partial/\partial t$, $p>1+2/N$, $N\ge 3$, $\Omega$ is a smooth domain in ${\bf R}^N$, and $\phi\in L^\infty(\Omega)$. In this paper we give a sufficient condition for the solution $u$ to behave like $\|u(t)\|_{L^\infty({\bf R}^N)}=O(t^{-1/(p-1)})$ as $t\to\infty$, and give a classification of the large time behavior of the solution $u$.
Citation: Kazuhiro Ishige, Michinori Ishiwata. Global solutions for a semilinear heat equation in the exterior domain of a compact set. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 847-865. doi: 10.3934/dcds.2012.32.847
References:
[1]

C. Bandle and H. A. Levine, Fujita type results for convective-like reaction diffusion equations in exterior domains,, Z. Angew. Math. Phys., 40 (1989), 665.

[2]

M.-F. Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type,, Arch. Rational Mech. Anal., 107 (1989), 293. doi: 10.1007/BF00251552.

[3]

M.-F. Bidaut-Véron and S. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems,, J. Anal. Math., 84 (2001), 1. doi: 10.1007/BF02788105.

[4]

T. Cazenave and P.-L. Lions, Solutions globales d'équations de la chaleur semi linéaires,, Comm. Partial Differential Equations, 9 (1984), 955.

[5]

M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation,, Nonlinear Anal., 11 (1987), 1103. doi: 10.1016/0362-546X(87)90001-0.

[6]

A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbfR^N$,, J. Math. Pures. Appl., 87 (2007), 537. doi: 10.1016/j.matpur.2007.03.001.

[7]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha }$,, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109.

[8]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525. doi: 10.1002/cpa.3160340406.

[9]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. Partial Differential Equations, 6 (1981), 883.

[10]

Y. Giga, A bound for global solutions of semilinear heat equations,, Comm. Math. Phys., 103 (1986), 415. doi: 10.1007/BF01211756.

[11]

A. Grigor'yan and L. Saloff-Coste, Dirichlet heat kernel in the exterior of a compact set,, Comm. Pure Appl. Math., 55 (2002), 93. doi: 10.1002/cpa.10014.

[12]

K. Ishige, On the behavior of the solutions of degenerate parabolic equations,, Nagoya Math. J., 155 (1999), 1.

[13]

K. Ishige, An intrinsic metric approach to uniqueness of the positive Dirichlet problem for parabolic equations in cylinders,, J. Differential Equations, 158 (1999), 251. doi: 10.1006/jdeq.1999.3646.

[14]

K. Ishige, Movement of hot spots on the exterior domain of a ball under the Dirichlet boundary condition,, Adv. Differential Equations, 12 (2007), 1135.

[15]

K. Ishige, M. Ishiwata and T. Kawakami, The decay of the solutions for the heat equation with a potential,, Indiana Univ. Math. J., 58 (2009), 2673. doi: 10.1512/iumj.2009.58.3771.

[16]

K. Ishige and T. Kawakami, Global solutions of the heat equation with a nonlinear boundary condition,, Calc. Var. Partial Differential Equations, 39 (2010), 429.

[17]

O. Kavian, Remarks on the large time behavior of a nonlinear diffusion equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 423.

[18]

T. Kawanago, Asymptotic behavior of solutions of a semilinear heat equation with subcritical nonlinearity,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 1.

[19]

O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural'ceva, "Linear and Quasi-linear Equations of Parabolic Type," (Russian),, Izdat., (1968).

[20]

M. Murata, Nonuniqueness of the positive Dirichlet problem for parabolic equations in cylinders,, J. Funct. Anal., 135 (1996), 456. doi: 10.1006/jfan.1996.0016.

[21]

R. Pinsky, The Fujita exponent for semilinear heat equations with quadratically decaying potential or in an exterior domain,, J. Differential Equations, 246 (2009), 2561. doi: 10.1016/j.jde.2008.07.029.

[22]

S. I. Pohožaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$,, Dokl. Akad. Nauk SSSR, 165 (1965), 36.

[23]

P. Quittner, The decay of global solutions of a semilinear heat equation,, Discrete Contin. Dyn. Syst., 21 (2008), 307. doi: 10.3934/dcds.2008.21.307.

[24]

P. Quittner and P. Souplet, "Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States,", Birkhäuser Advanced Texts: Basler Lehrbücher, (2007).

[25]

S. Salsa, Some properties of nonnegative solutions of parabolic differential operators,, Ann. Mat. Pura Appl., 128 (1981), 193. doi: 10.1007/BF01789473.

[26]

K. Takaichi, Boundedness of global solutions for some semilinear parabolic problems on general domains,, Adv. Math. Sci. Appl., 16 (2006), 479.

[27]

M. Willem, "Minimax Theorems,", Progress in Nonlinear Differential Equations and their Applications, 24 (1996).

show all references

References:
[1]

C. Bandle and H. A. Levine, Fujita type results for convective-like reaction diffusion equations in exterior domains,, Z. Angew. Math. Phys., 40 (1989), 665.

[2]

M.-F. Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type,, Arch. Rational Mech. Anal., 107 (1989), 293. doi: 10.1007/BF00251552.

[3]

M.-F. Bidaut-Véron and S. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems,, J. Anal. Math., 84 (2001), 1. doi: 10.1007/BF02788105.

[4]

T. Cazenave and P.-L. Lions, Solutions globales d'équations de la chaleur semi linéaires,, Comm. Partial Differential Equations, 9 (1984), 955.

[5]

M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation,, Nonlinear Anal., 11 (1987), 1103. doi: 10.1016/0362-546X(87)90001-0.

[6]

A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbfR^N$,, J. Math. Pures. Appl., 87 (2007), 537. doi: 10.1016/j.matpur.2007.03.001.

[7]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha }$,, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109.

[8]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525. doi: 10.1002/cpa.3160340406.

[9]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. Partial Differential Equations, 6 (1981), 883.

[10]

Y. Giga, A bound for global solutions of semilinear heat equations,, Comm. Math. Phys., 103 (1986), 415. doi: 10.1007/BF01211756.

[11]

A. Grigor'yan and L. Saloff-Coste, Dirichlet heat kernel in the exterior of a compact set,, Comm. Pure Appl. Math., 55 (2002), 93. doi: 10.1002/cpa.10014.

[12]

K. Ishige, On the behavior of the solutions of degenerate parabolic equations,, Nagoya Math. J., 155 (1999), 1.

[13]

K. Ishige, An intrinsic metric approach to uniqueness of the positive Dirichlet problem for parabolic equations in cylinders,, J. Differential Equations, 158 (1999), 251. doi: 10.1006/jdeq.1999.3646.

[14]

K. Ishige, Movement of hot spots on the exterior domain of a ball under the Dirichlet boundary condition,, Adv. Differential Equations, 12 (2007), 1135.

[15]

K. Ishige, M. Ishiwata and T. Kawakami, The decay of the solutions for the heat equation with a potential,, Indiana Univ. Math. J., 58 (2009), 2673. doi: 10.1512/iumj.2009.58.3771.

[16]

K. Ishige and T. Kawakami, Global solutions of the heat equation with a nonlinear boundary condition,, Calc. Var. Partial Differential Equations, 39 (2010), 429.

[17]

O. Kavian, Remarks on the large time behavior of a nonlinear diffusion equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 423.

[18]

T. Kawanago, Asymptotic behavior of solutions of a semilinear heat equation with subcritical nonlinearity,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 1.

[19]

O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural'ceva, "Linear and Quasi-linear Equations of Parabolic Type," (Russian),, Izdat., (1968).

[20]

M. Murata, Nonuniqueness of the positive Dirichlet problem for parabolic equations in cylinders,, J. Funct. Anal., 135 (1996), 456. doi: 10.1006/jfan.1996.0016.

[21]

R. Pinsky, The Fujita exponent for semilinear heat equations with quadratically decaying potential or in an exterior domain,, J. Differential Equations, 246 (2009), 2561. doi: 10.1016/j.jde.2008.07.029.

[22]

S. I. Pohožaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$,, Dokl. Akad. Nauk SSSR, 165 (1965), 36.

[23]

P. Quittner, The decay of global solutions of a semilinear heat equation,, Discrete Contin. Dyn. Syst., 21 (2008), 307. doi: 10.3934/dcds.2008.21.307.

[24]

P. Quittner and P. Souplet, "Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States,", Birkhäuser Advanced Texts: Basler Lehrbücher, (2007).

[25]

S. Salsa, Some properties of nonnegative solutions of parabolic differential operators,, Ann. Mat. Pura Appl., 128 (1981), 193. doi: 10.1007/BF01789473.

[26]

K. Takaichi, Boundedness of global solutions for some semilinear parabolic problems on general domains,, Adv. Math. Sci. Appl., 16 (2006), 479.

[27]

M. Willem, "Minimax Theorems,", Progress in Nonlinear Differential Equations and their Applications, 24 (1996).

[1]

Pavol Quittner. The decay of global solutions of a semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 307-318. doi: 10.3934/dcds.2008.21.307

[2]

Keisuke Matsuya, Tetsuji Tokihiro. Existence and non-existence of global solutions for a discrete semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 209-220. doi: 10.3934/dcds.2011.31.209

[3]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[4]

Ming He, Jianwen Zhang. Global cylindrical solution to the compressible MHD equations in an exterior domain. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1841-1865. doi: 10.3934/cpaa.2009.8.1841

[5]

Xie Li, Zhaoyin Xiang. Existence and nonexistence of local/global solutions for a nonhomogeneous heat equation. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1465-1480. doi: 10.3934/cpaa.2014.13.1465

[6]

Kazuhiro Ishige, Tatsuki Kawakami, Kanako Kobayashi. Global solutions for a nonlinear integral equation with a generalized heat kernel. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 767-783. doi: 10.3934/dcdss.2014.7.767

[7]

Zhengce Zhang, Yan Li. Global existence and gradient blowup of solutions for a semilinear parabolic equation with exponential source. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 3019-3029. doi: 10.3934/dcdsb.2014.19.3019

[8]

C. Brändle, E. Chasseigne, Raúl Ferreira. Unbounded solutions of the nonlocal heat equation. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1663-1686. doi: 10.3934/cpaa.2011.10.1663

[9]

Xiangqing Zhao, Bing-Yu Zhang. Global controllability and stabilizability of Kawahara equation on a periodic domain. Mathematical Control & Related Fields, 2015, 5 (2) : 335-358. doi: 10.3934/mcrf.2015.5.335

[10]

Soichiro Katayama, Hideo Kubo, Sandra Lucente. Almost global existence for exterior Neumann problems of semilinear wave equations in $2$D. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2331-2360. doi: 10.3934/cpaa.2013.12.2331

[11]

Hideo Kubo. Global existence for exterior problems of semilinear wave equations with the null condition in $2$D. Evolution Equations & Control Theory, 2013, 2 (2) : 319-335. doi: 10.3934/eect.2013.2.319

[12]

Takeshi Taniguchi. The existence and decay estimates of the solutions to $3$D stochastic Navier-Stokes equations with additive noise in an exterior domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4323-4341. doi: 10.3934/dcds.2014.34.4323

[13]

Kazuhiro Ishige, Tatsuki Kawakami. Asymptotic behavior of solutions for some semilinear heat equations in $R^N$. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1351-1371. doi: 10.3934/cpaa.2009.8.1351

[14]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1/2) : 495-520. doi: 10.3934/dcds.2009.23.495

[15]

Eunkyoung Ko, Eun Kyoung Lee, R. Shivaji. Multiplicity results for classes of singular problems on an exterior domain. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11/12) : 5153-5166. doi: 10.3934/dcds.2013.33.5153

[16]

Šárka Nečasová. Stokes and Oseen flow with Coriolis force in the exterior domain. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 339-351. doi: 10.3934/dcdss.2008.1.339

[17]

Thierry Cazenave, Flávio Dickstein, Fred B. Weissler. Universal solutions of the heat equation on $\mathbb R^N$. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1105-1132. doi: 10.3934/dcds.2003.9.1105

[18]

Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109

[19]

Henri Berestycki, Juncheng Wei. On least energy solutions to a semilinear elliptic equation in a strip. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1083-1099. doi: 10.3934/dcds.2010.28.1083

[20]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]