2012, 32(12): 4133-4147. doi: 10.3934/dcds.2012.32.4133

Inducing and unique ergodicity of double rotations

1. 

Department of Mathematics, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

Received  June 2011 Revised  October 2011 Published  August 2012

In this paper we investigate ``double rotations'', i.e., interval translation maps that when considered on the circle, have just two intervals of continuity. Using the induction procedure described by Suzuki et al., we show that Lebesgue a.e. double rotation is of finite type, i.e., it reduces to an interval exchange transformation. However, the set of infinite type double rotations is shown to have Hausdorff dimension strictly between $2$ and $3$, and carries a natural induction-invariant measure. It is also shown that non-unique ergodicity of infinite type double rotations, although occurring, is a-typical with respect to every induction-invariant probability measure in parameter space.
Citation: Henk Bruin, Gregory Clack. Inducing and unique ergodicity of double rotations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4133-4147. doi: 10.3934/dcds.2012.32.4133
References:
[1]

M. Barnsley, "Fractals Everywhere,'', Academic Press Inc., (1988).

[2]

G. Birkhoff, Extensions of Jentzsch's theorem,, Trans. Amer. Math. Soc., 85 (1957), 219. doi: 10.2307/1992971.

[3]

M. Boshernitzan and I. Kornfeld, Interval translation mappings,, Ergod. Th. Dyn. Sys., 15 (1995), 821. doi: 10.1017/S0143385700009652.

[4]

H. Bruin and S. Troubetzkoy, The Gauss map on a class of interval translation mappings,, Israel J. Math., 137 (2003), 125. doi: 10.1007/BF02785958.

[5]

J. Buzzi and P. Hubert, Piecewise monotone maps without periodic points: Rigidity, measures and complexity,, Ergodic Theory Dynam. Systems, 24 (2004), 383. doi: 10.1017/S0143385703000488.

[6]

M. Keane, Non-ergodic interval exchange transformations,, Israel J. Math., 26 (1977), 188. doi: 10.1007/BF03007668.

[7]

H. B. Keynes and D. Newton, A "minimal'', non-uniquely ergodic interval exchange transformation,, Math. Z., 148 (1976), 101. doi: 10.1007/BF01214699.

[8]

R. Mañé, "Ergodic Theory and Differentiable Dynamics,'', Springer-Verlag, (1987).

[9]

H. Masur, Interval exchange transformations and measured foliations,, Ann. of Math., 115 (1982), 169. doi: 10.2307/1971341.

[10]

W. de Melo and S. van Strien, "One-Dimensional Dynamics,'', Springer-Verlag, (1996).

[11]

H. Suzuki, S. Ito and K. Aihara, Double rotations, , Discrete Contin. Dyn. Sys., 13 (2005), 515. doi: 10.3934/dcds.2005.13.515.

[12]

J. Schmeling and S. Troubetzkoy, Interval translation mappings,, in, (2000), 291.

[13]

W. Veech, Gauss measures for transformations on the space of interval exchange maps,, Ann. of Math., 115 (1982), 201. doi: 10.2307/1971391.

show all references

References:
[1]

M. Barnsley, "Fractals Everywhere,'', Academic Press Inc., (1988).

[2]

G. Birkhoff, Extensions of Jentzsch's theorem,, Trans. Amer. Math. Soc., 85 (1957), 219. doi: 10.2307/1992971.

[3]

M. Boshernitzan and I. Kornfeld, Interval translation mappings,, Ergod. Th. Dyn. Sys., 15 (1995), 821. doi: 10.1017/S0143385700009652.

[4]

H. Bruin and S. Troubetzkoy, The Gauss map on a class of interval translation mappings,, Israel J. Math., 137 (2003), 125. doi: 10.1007/BF02785958.

[5]

J. Buzzi and P. Hubert, Piecewise monotone maps without periodic points: Rigidity, measures and complexity,, Ergodic Theory Dynam. Systems, 24 (2004), 383. doi: 10.1017/S0143385703000488.

[6]

M. Keane, Non-ergodic interval exchange transformations,, Israel J. Math., 26 (1977), 188. doi: 10.1007/BF03007668.

[7]

H. B. Keynes and D. Newton, A "minimal'', non-uniquely ergodic interval exchange transformation,, Math. Z., 148 (1976), 101. doi: 10.1007/BF01214699.

[8]

R. Mañé, "Ergodic Theory and Differentiable Dynamics,'', Springer-Verlag, (1987).

[9]

H. Masur, Interval exchange transformations and measured foliations,, Ann. of Math., 115 (1982), 169. doi: 10.2307/1971341.

[10]

W. de Melo and S. van Strien, "One-Dimensional Dynamics,'', Springer-Verlag, (1996).

[11]

H. Suzuki, S. Ito and K. Aihara, Double rotations, , Discrete Contin. Dyn. Sys., 13 (2005), 515. doi: 10.3934/dcds.2005.13.515.

[12]

J. Schmeling and S. Troubetzkoy, Interval translation mappings,, in, (2000), 291.

[13]

W. Veech, Gauss measures for transformations on the space of interval exchange maps,, Ann. of Math., 115 (1982), 201. doi: 10.2307/1971391.

[1]

Denis Volk. Almost every interval translation map of three intervals is finite type. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2307-2314. doi: 10.3934/dcds.2014.34.2307

[2]

Jon Chaika, Rodrigo Treviño. Logarithmic laws and unique ergodicity. Journal of Modern Dynamics, 2017, 11: 563-588. doi: 10.3934/jmd.2017022

[3]

Charles Pugh, Michael Shub, Alexander Starkov. Unique ergodicity, stable ergodicity, and the Mautner phenomenon for diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 845-855. doi: 10.3934/dcds.2006.14.845

[4]

Arek Goetz. Dynamics of a piecewise rotation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 593-608. doi: 10.3934/dcds.1998.4.593

[5]

Marcello Trovati, Peter Ashwin, Nigel Byott. Packings induced by piecewise isometries cannot contain the arbelos. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 791-806. doi: 10.3934/dcds.2008.22.791

[6]

Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617

[7]

David Ralston, Serge Troubetzkoy. Ergodicity of certain cocycles over certain interval exchanges. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2523-2529. doi: 10.3934/dcds.2013.33.2523

[8]

Salvador Addas-Zanata. Stability for the vertical rotation interval of twist mappings. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 631-642. doi: 10.3934/dcds.2006.14.631

[9]

Anna Belova. Rigorous enclosures of rotation numbers by interval methods. Journal of Computational Dynamics, 2016, 3 (1) : 81-91. doi: 10.3934/jcd.2016004

[10]

François Ledrappier, Omri Sarig. Unique ergodicity for non-uniquely ergodic horocycle flows. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 411-433. doi: 10.3934/dcds.2006.16.411

[11]

Jozef Bobok, Martin Soukenka. On piecewise affine interval maps with countably many laps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 753-762. doi: 10.3934/dcds.2011.31.753

[12]

Yuanhong Chen, Chao Ma, Jun Wu. Moving recurrent properties for the doubling map on the unit interval. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2969-2979. doi: 10.3934/dcds.2016.36.2969

[13]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[14]

Paul Deuring, Stanislav Kračmar, Šárka Nečasová. A leading term for the velocity of stationary viscous incompressible flow around a rigid body performing a rotation and a translation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1389-1409. doi: 10.3934/dcds.2017057

[15]

Daniel Schnellmann. Typical points for one-parameter families of piecewise expanding maps of the interval. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 877-911. doi: 10.3934/dcds.2011.31.877

[16]

Zhiying Qin, Jichen Yang, Soumitro Banerjee, Guirong Jiang. Border-collision bifurcations in a generalized piecewise linear-power map. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 547-567. doi: 10.3934/dcdsb.2011.16.547

[17]

Hun Ki Baek, Younghae Do. Dangerous Border-Collision bifurcations of a piecewise-smooth map. Communications on Pure & Applied Analysis, 2006, 5 (3) : 493-503. doi: 10.3934/cpaa.2006.5.493

[18]

David Burguet. Examples of $\mathcal{C}^r$ interval map with large symbolic extension entropy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 873-899. doi: 10.3934/dcds.2010.26.873

[19]

Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1205-1208. doi: 10.3934/dcds.2009.24.1205

[20]

Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]