• Previous Article
    Non-autonomous 3D primitive equations with oscillating external force and its global attractor
  • DCDS Home
  • This Issue
  • Next Article
    The effect of toxins on the plasmid-bearing and plasmid-free model in the unstirred chemostat
2012, 32(1): 293-301. doi: 10.3934/dcds.2012.32.293

A generalization of expansivity

1. 

Instituto de Matemàtica, Universidade Federal do Rio de Janeiro, C. P. 68530, CEP 21945-970, Rio de Janeiro, Brazil

Received  July 2010 Revised  January 2011 Published  September 2011

We study dynamical systems for which at most $n$ orbits can accompany a given arbitrary orbit. For simplicity we call them $n$-expansive (or positively $n$-expansive if positive orbits are considered instead). We prove that these systems can satisfy properties of expansive systems or not. For instance, unlike positively expansive maps [3], positively $n$-expansive homeomorphisms may exist on certain infinite compact metric spaces. We also prove that a map (resp. bijective map) is positively $n$-expansive (resp. $n$-expansive) if and only if it is so outside finitely many points. Finally, we prove that a homeomorphism on a compact metric space is $n$-expansive if and only if it is so outside finitely many orbits. These last resuls extends previous ones for expansive systems [2],[11],[12].
Citation: Carlos Arnoldo Morales. A generalization of expansivity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 293-301. doi: 10.3934/dcds.2012.32.293
References:
[1]

R. Bowen, Entropy-expansive maps,, Trans. Amer. Math. Soc., 164 (1972), 323. doi: 10.1090/S0002-9947-1972-0285689-X.

[2]

B. F. Bryant, Expansive self-homeomorphisms of a compact metric space,, Amer. Math. Monthly, 69 (1962), 386. doi: 10.2307/2312129.

[3]

E. M. Coven and M. Keane, Every compact metric space that supports a positively expansive homeomorphism is finite,, Dynamics & Stochastics, (2006), 304.

[4]

J. Dydak and C. S. Hoffland, An alternative definition of coarse structures,, Topology Appl., 155 (2008), 1013. doi: 10.1016/j.topol.2008.01.002.

[5]

M. Eisenberg, Expansive transformation semigroups of endomorphisms,, Fund. Math., 59 (1966), 313.

[6]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", with a supplementary chapter by Katok and Leonardo Mendoza, (1995).

[7]

H. Kato, Continuum-wise expansive homeomorphisms,, Canad. J. Math., 45 (1993), 576. doi: 10.4153/CJM-1993-030-4.

[8]

C. Morales, Measure-expansive systems,, Preprint (2010) submitted., (2010).

[9]

W. L. Reddy, Pointwise expansion homeomorphisms,, J. London Math. Soc., 2 (1970), 232. doi: 10.1112/jlms/s2-2.2.232.

[10]

W. R. Utz, Unstable homeomorphisms,, Proc. Amer. Math. Soc., 1 (1950), 769. doi: 10.1090/S0002-9939-1950-0038022-3.

[11]

W. R. Utz, Expansive mappings,, Proceedings of the 1978 Topology Conference (Univ. Oklahoma, 3 (1978), 221.

[12]

R. K. Williams, On expansive homeomorphisms,, Amer. Math. Monthly, 76 (1969), 176. doi: 10.2307/2317269.

show all references

References:
[1]

R. Bowen, Entropy-expansive maps,, Trans. Amer. Math. Soc., 164 (1972), 323. doi: 10.1090/S0002-9947-1972-0285689-X.

[2]

B. F. Bryant, Expansive self-homeomorphisms of a compact metric space,, Amer. Math. Monthly, 69 (1962), 386. doi: 10.2307/2312129.

[3]

E. M. Coven and M. Keane, Every compact metric space that supports a positively expansive homeomorphism is finite,, Dynamics & Stochastics, (2006), 304.

[4]

J. Dydak and C. S. Hoffland, An alternative definition of coarse structures,, Topology Appl., 155 (2008), 1013. doi: 10.1016/j.topol.2008.01.002.

[5]

M. Eisenberg, Expansive transformation semigroups of endomorphisms,, Fund. Math., 59 (1966), 313.

[6]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", with a supplementary chapter by Katok and Leonardo Mendoza, (1995).

[7]

H. Kato, Continuum-wise expansive homeomorphisms,, Canad. J. Math., 45 (1993), 576. doi: 10.4153/CJM-1993-030-4.

[8]

C. Morales, Measure-expansive systems,, Preprint (2010) submitted., (2010).

[9]

W. L. Reddy, Pointwise expansion homeomorphisms,, J. London Math. Soc., 2 (1970), 232. doi: 10.1112/jlms/s2-2.2.232.

[10]

W. R. Utz, Unstable homeomorphisms,, Proc. Amer. Math. Soc., 1 (1950), 769. doi: 10.1090/S0002-9939-1950-0038022-3.

[11]

W. R. Utz, Expansive mappings,, Proceedings of the 1978 Topology Conference (Univ. Oklahoma, 3 (1978), 221.

[12]

R. K. Williams, On expansive homeomorphisms,, Amer. Math. Monthly, 76 (1969), 176. doi: 10.2307/2317269.

[1]

Alfonso Artigue. Robustly N-expansive surface diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2367-2376. doi: 10.3934/dcds.2016.36.2367

[2]

Jorge Groisman. Expansive homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 213-239. doi: 10.3934/dcds.2011.29.213

[3]

Alfonso Artigue. Lipschitz perturbations of expansive systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1829-1841. doi: 10.3934/dcds.2015.35.1829

[4]

Alfonso Artigue. Expansive flows of surfaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 505-525. doi: 10.3934/dcds.2013.33.505

[5]

Byung-Soo Lee. A convergence theorem of common fixed points of a countably infinite family of asymptotically quasi-$f_i$-expansive mappings in convex metric spaces. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 557-565. doi: 10.3934/naco.2013.3.557

[6]

Alfonso Artigue. Singular cw-expansive flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2945-2956. doi: 10.3934/dcds.2017126

[7]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[8]

Alfonso Artigue. Anomalous cw-expansive surface homeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3511-3518. doi: 10.3934/dcds.2016.36.3511

[9]

Martín Sambarino, José L. Vieitez. On $C^1$-persistently expansive homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 465-481. doi: 10.3934/dcds.2006.14.465

[10]

Martín Sambarino, José L. Vieitez. Robustly expansive homoclinic classes are generically hyperbolic. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1325-1333. doi: 10.3934/dcds.2009.24.1325

[11]

Keonhee Lee, Manseob Lee. Hyperbolicity of $C^1$-stably expansive homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1133-1145. doi: 10.3934/dcds.2010.27.1133

[12]

Jiguang Bao, Nguyen Lam, Guozhen Lu. Polyharmonic equations with critical exponential growth in the whole space $ \mathbb{R}^{n}$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 577-600. doi: 10.3934/dcds.2016.36.577

[13]

Alfonso Artigue. Discrete and continuous topological dynamics: Fields of cross sections and expansive flows. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5911-5927. doi: 10.3934/dcds.2016059

[14]

Artur O. Lopes, Vladimir A. Rosas, Rafael O. Ruggiero. Cohomology and subcohomology problems for expansive, non Anosov geodesic flows. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 403-422. doi: 10.3934/dcds.2007.17.403

[15]

Tatsuya Arai. The structure of dendrites constructed by pointwise P-expansive maps on the unit interval. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 43-61. doi: 10.3934/dcds.2016.36.43

[16]

Lidong Wang, Hui Wang, Guifeng Huang. Minimal sets and $\omega$-chaos in expansive systems with weak specification property. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1231-1238. doi: 10.3934/dcds.2015.35.1231

[17]

Yanqin Fang, Jihui Zhang. Nonexistence of positive solution for an integral equation on a Half-Space $R_+^n$. Communications on Pure & Applied Analysis, 2013, 12 (2) : 663-678. doi: 10.3934/cpaa.2013.12.663

[18]

Yu-Zhu Wang, Si Chen, Menglong Su. Asymptotic profile of solutions to the linearized double dispersion equation on the half space $\mathbb{R}^{n}_{+}$. Evolution Equations & Control Theory, 2017, 6 (4) : 629-645. doi: 10.3934/eect.2017032

[19]

Yong Xia, Ruey-Lin Sheu, Shu-Cherng Fang, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅱ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1307-1328. doi: 10.3934/jimo.2016074

[20]

Shu-Cherng Fang, David Y. Gao, Gang-Xuan Lin, Ruey-Lin Sheu, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅰ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1291-1305. doi: 10.3934/jimo.2016073

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]