2012, 32(7): 2521-2531. doi: 10.3934/dcds.2012.32.2521

The Ruelle spectrum of generic transfer operators

1. 

Université d’Avignon, Laboratoire d’Analyse non linéraire et Géométrie, 33, rue Louis Pasteur, 84000, France

Received  December 2009 Revised  July 2010 Published  March 2012

We define a natural space of transfer operators related to holomorphic contraction systems. We show that the classical upper bounds on the Ruelle eigenvalue sequence are optimal for a dense set of transfer operators. A similar statement is derived for Perron-Frobenius operators related to uniformly expanding piecewise real analytic interval maps. The proof is based on potential theory.
Citation: Frédéric Naud. The Ruelle spectrum of generic transfer operators. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2521-2531. doi: 10.3934/dcds.2012.32.2521
References:
[1]

Viviane Baladi, "Positive Transfer Operators and Decay of Correlations," Advanced Series in Nonlinear Dynamics, 16,, World Scientific Publishing Co, (2000).

[2]

Oscar F. Bandtlow and Oliver Jenkinson, Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions,, Adv. Math., 218 (2008), 902. doi: 10.1016/j.aim.2008.02.005.

[3]

Oscar F. Bandtlow and Oliver Jenkinson, On the Ruelle eigenvalue sequence,, Ergodic Theory Dynam. Systems, 28 (2008), 1701. doi: 10.1017/S0143385708000059.

[4]

T. Christiansen, Several complex variables and the distribution of resonances in potential scattering,, Comm. Math. Phys., 259 (2005), 711. doi: 10.1007/s00220-005-1381-y.

[5]

T. J. Christiansen, Several complex variables and the order of growth of the resonance counting function in Euclidean scattering,, Int. Math. Res. Not., 2006 (4316).

[6]

David Fried, The zeta functions of Ruelle and Selberg. I,, Ann. Sci. École Norm. Sup. (4), 19 (1986), 491.

[7]

Israel Gohberg, Seymour Goldberg and Nahum Krupnik, "Traces and Determinants of Linear Operators," Operator Theory: Advances and Applications, 116,, Birkhäuser Verlag, (2000).

[8]

Pierre Lelong and Lawrence Gruman, "Entire Functions of Several Complex Variables," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 282,, Springer-Verlag, (1986).

[9]

Thomas Ransford, "Potential Theory in the Complex Plane," London Mathematical Society Student Texts, 28,, Cambridge University Press, (1995).

[10]

David Ruelle, Zeta-functions for expanding maps and Anosov flows,, Invent. Math., 34 (1976), 231.

show all references

References:
[1]

Viviane Baladi, "Positive Transfer Operators and Decay of Correlations," Advanced Series in Nonlinear Dynamics, 16,, World Scientific Publishing Co, (2000).

[2]

Oscar F. Bandtlow and Oliver Jenkinson, Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions,, Adv. Math., 218 (2008), 902. doi: 10.1016/j.aim.2008.02.005.

[3]

Oscar F. Bandtlow and Oliver Jenkinson, On the Ruelle eigenvalue sequence,, Ergodic Theory Dynam. Systems, 28 (2008), 1701. doi: 10.1017/S0143385708000059.

[4]

T. Christiansen, Several complex variables and the distribution of resonances in potential scattering,, Comm. Math. Phys., 259 (2005), 711. doi: 10.1007/s00220-005-1381-y.

[5]

T. J. Christiansen, Several complex variables and the order of growth of the resonance counting function in Euclidean scattering,, Int. Math. Res. Not., 2006 (4316).

[6]

David Fried, The zeta functions of Ruelle and Selberg. I,, Ann. Sci. École Norm. Sup. (4), 19 (1986), 491.

[7]

Israel Gohberg, Seymour Goldberg and Nahum Krupnik, "Traces and Determinants of Linear Operators," Operator Theory: Advances and Applications, 116,, Birkhäuser Verlag, (2000).

[8]

Pierre Lelong and Lawrence Gruman, "Entire Functions of Several Complex Variables," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 282,, Springer-Verlag, (1986).

[9]

Thomas Ransford, "Potential Theory in the Complex Plane," London Mathematical Society Student Texts, 28,, Cambridge University Press, (1995).

[10]

David Ruelle, Zeta-functions for expanding maps and Anosov flows,, Invent. Math., 34 (1976), 231.

[1]

Gary Froyland, Ognjen Stancevic. Escape rates and Perron-Frobenius operators: Open and closed dynamical systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 457-472. doi: 10.3934/dcdsb.2010.14.457

[2]

Martin Lustig, Caglar Uyanik. Perron-Frobenius theory and frequency convergence for reducible substitutions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 355-385. doi: 10.3934/dcds.2017015

[3]

Vesselin Petkov, Luchezar Stoyanov. Ruelle transfer operators with two complex parameters and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6413-6451. doi: 10.3934/dcds.2016077

[4]

Stefan Klus, Péter Koltai, Christof Schütte. On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (1) : 51-79. doi: 10.3934/jcd.2016003

[5]

Marc Kesseböhmer, Sabrina Kombrink. A complex Ruelle-Perron-Frobenius theorem for infinite Markov shifts with applications to renewal theory. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 335-352. doi: 10.3934/dcdss.2017016

[6]

Jiu Ding, Noah H. Rhee. A unified maximum entropy method via spline functions for Frobenius-Perron operators. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 235-245. doi: 10.3934/naco.2013.3.235

[7]

Vincenzo Recupero. Hysteresis operators in metric spaces. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 773-792. doi: 10.3934/dcdss.2015.8.773

[8]

Frédéric Naud. Birkhoff cones, symbolic dynamics and spectrum of transfer operators. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 581-598. doi: 10.3934/dcds.2004.11.581

[9]

Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917

[10]

François Hamel, Emmanuel Russ, Nikolai Nadirashvili. Comparisons of eigenvalues of second order elliptic operators. Conference Publications, 2007, 2007 (Special) : 477-486. doi: 10.3934/proc.2007.2007.477

[11]

Miklós Horváth, Márton Kiss. A bound for ratios of eigenvalues of Schrodinger operators on the real line. Conference Publications, 2005, 2005 (Special) : 403-409. doi: 10.3934/proc.2005.2005.403

[12]

Dachun Yang, Sibei Yang. Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated to non-negative self-adjoint operators satisfying Gaussian estimates. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2135-2160. doi: 10.3934/cpaa.2016031

[13]

Gary Froyland, Cecilia González-Tokman, Anthony Quas. Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. Journal of Computational Dynamics, 2014, 1 (2) : 249-278. doi: 10.3934/jcd.2014.1.249

[14]

Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417

[15]

Niels Jacob, Feng-Yu Wang. Higher order eigenvalues for non-local Schrödinger operators. Communications on Pure & Applied Analysis, 2018, 17 (1) : 191-208. doi: 10.3934/cpaa.2018012

[16]

Marta García-Huidobro, Raul Manásevich, J. R. Ward. Vector p-Laplacian like operators, pseudo-eigenvalues, and bifurcation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 299-321. doi: 10.3934/dcds.2007.19.299

[17]

Wenxian Shen, Xiaoxia Xie. On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1665-1696. doi: 10.3934/dcds.2015.35.1665

[18]

Wolfgang Arendt, Patrick J. Rabier. Linear evolution operators on spaces of periodic functions. Communications on Pure & Applied Analysis, 2009, 8 (1) : 5-36. doi: 10.3934/cpaa.2009.8.5

[19]

J. Alberto Conejero, Marko Kostić, Pedro J. Miana, Marina Murillo-Arcila. Distributionally chaotic families of operators on Fréchet spaces. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1915-1939. doi: 10.3934/cpaa.2016022

[20]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]