2012, 32(7): 2403-2416. doi: 10.3934/dcds.2012.32.2403

Examples of coarse expanding conformal maps

1. 

Centre de Mathmatiques et Informatique (CMI) et LATP, Aix-Marseille Université, 39, rue F. Joliot Curie 13453 Marseille Cedex 13, France

2. 

Dept. Mathematics, Indiana University, Bloomington, IN 47405, United States

Received  February 2010 Revised  October 2010 Published  March 2012

In previous work, a class of noninvertible topological dynamical systems $f: X \to X$ was introduced and studied; we called these topologically coarse expanding conformal systems. To such a system is naturally associated a preferred quasisymmetry (indeed, snowflake) class of metrics in which arbitrary iterates distort roundness and ratios of diameters by controlled amounts; we called this metrically coarse expanding conformal. In this note we extend the class of examples to several more familiar settings, give applications of our general methods, and discuss implications for the computation of conformal dimension.
Citation: Peter Haïssinsky, Kevin M. Pilgrim. Examples of coarse expanding conformal maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2403-2416. doi: 10.3934/dcds.2012.32.2403
References:
[1]

Christoph Bandt, On the Mandelbrot set for pairs of linear maps,, Nonlinearity, 15 (2002), 1127. doi: 10.1088/0951-7715/15/4/309.

[2]

Christoph Bandt and Karsten Keller, Self-similar sets. II. A simple approach to the topological structure of fractals,, Math. Nachr., 154 (1991), 27. doi: 10.1002/mana.19911540104.

[3]

Christoph Bandt and Hui Rao, Topology and separation of self-similar fractals in the plane,, Nonlinearity, 20 (2007), 1463. doi: 10.1088/0951-7715/20/6/008.

[4]

Mladen Bestvina, "Characterizing Universal $k$-Dimensional Menger Compacta,", Memoirs of the American Mathematical Society, 380 (1988).

[5]

Paul Blanchard, Robert L. Devaney, Daniel M. Look, Pradipta Seal and Yakov Shapiro, Sierpinski-curve Julia sets and singular perturbations of complex polynomials,, Ergodic Theory Dynam. Systems, 25 (2005), 1047. doi: 10.1017/S0143385704000380.

[6]

Mario Bonk, Quasiconformal geometry of fractals,, In, (2006), 1349.

[7]

Mario Bonk and Sergiy Merenkov, Quasisymmetric rigidity of Sierpiński carpets,, \arXiv{1102.3224}., ().

[8]

Matias Carrasco, "Jauge Conforme des Espaces Métriques Compacts,", Ph.D. thesis, (2011).

[9]

J. W. Cannon, W. J. Floyd and W. R. Parry, Finite subdivision rules,, Conformal Geometry and Dynamics, 5 (2001), 153. doi: 10.1090/S1088-4173-01-00055-8.

[10]

Adrien Douady and John Hubbard, A Proof of Thurston's topological characterization of rational functions,, Acta. Math., 171 (1993), 263. doi: 10.1007/BF02392534.

[11]

Allan L. Edmonds, Branched coverings and orbit maps,, Michigan Math. J., 23 (1976), 289. doi: 10.1307/mmj/1029001762.

[12]

Kemal Eroğlu, Steffen Rohde and Boris Solomyak, Quasisymmetric conjugacy between quadratic dynamics and iterated function systems,, Ergodic Theory Dynam. Systems, 30 (2010), 1665. doi: 10.1017/S0143385709000789.

[13]

Peter Haïssinsky and Kevin Pilgrim, Thurston obstructions and Ahlfors regular conformal dimension,, Journal de Mathématiques Pures et Appliquées, 90 (2008), 229. doi: 10.1016/j.matpur.2008.04.006.

[14]

Peter Haïssinsky and Kevin M. Pilgrim, Coarse expanding conformal dynamics,, Astérisque No., 325 (2009).

[15]

Juha Heinonen, "Lectures on Analysis on Metric Spaces,", Universitext, (2001). doi: 10.1007/978-1-4613-0131-8.

[16]

Atsushi Kameyama, Julia sets of postcritically finite rational maps and topological self-similar sets,, Nonlinearity, 13 (2000), 165. doi: 10.1088/0951-7715/13/1/308.

[17]

R. Daniel Mauldin and Stanley C. Williams, Hausdorff dimension in graph directed constructions,, Trans. Amer. Math. Soc., 309 (1988), 811. doi: 10.1090/S0002-9947-1988-0961615-4.

[18]

Curtis T. McMullen, "Complex Dynamics and Renormalization,", Annals of Mathematics Studies, 135 (1994).

[19]

Sergiy Merenkov, A Sierpiński carpet with the co-Hopfian property,, Invent. Math., 180 (2010), 361.

[20]

John Milnor, Geometry and dynamics of quadratic rational maps,, With an appendix by the author and Tan Lei, 2 (1993), 37.

[21]

Kevin M. Pilgrim, Canonical Thurston obstructions,, Advances in Mathematics, 158 (2001), 154. doi: 10.1006/aima.2000.1971.

[22]

Christopher W. Stark, Minimal dynamics on Menger manifolds,, Topology Appl., 90 (1998), 21. doi: 10.1016/S0166-8641(97)00185-5.

[23]

Jeremy T. Tyson and Jang-Mei Wu, Quasiconformal dimensions of self-similar fractals,, Rev. Mat. Iberoam., 22 (2006), 205. doi: 10.4171/RMI/454.

show all references

References:
[1]

Christoph Bandt, On the Mandelbrot set for pairs of linear maps,, Nonlinearity, 15 (2002), 1127. doi: 10.1088/0951-7715/15/4/309.

[2]

Christoph Bandt and Karsten Keller, Self-similar sets. II. A simple approach to the topological structure of fractals,, Math. Nachr., 154 (1991), 27. doi: 10.1002/mana.19911540104.

[3]

Christoph Bandt and Hui Rao, Topology and separation of self-similar fractals in the plane,, Nonlinearity, 20 (2007), 1463. doi: 10.1088/0951-7715/20/6/008.

[4]

Mladen Bestvina, "Characterizing Universal $k$-Dimensional Menger Compacta,", Memoirs of the American Mathematical Society, 380 (1988).

[5]

Paul Blanchard, Robert L. Devaney, Daniel M. Look, Pradipta Seal and Yakov Shapiro, Sierpinski-curve Julia sets and singular perturbations of complex polynomials,, Ergodic Theory Dynam. Systems, 25 (2005), 1047. doi: 10.1017/S0143385704000380.

[6]

Mario Bonk, Quasiconformal geometry of fractals,, In, (2006), 1349.

[7]

Mario Bonk and Sergiy Merenkov, Quasisymmetric rigidity of Sierpiński carpets,, \arXiv{1102.3224}., ().

[8]

Matias Carrasco, "Jauge Conforme des Espaces Métriques Compacts,", Ph.D. thesis, (2011).

[9]

J. W. Cannon, W. J. Floyd and W. R. Parry, Finite subdivision rules,, Conformal Geometry and Dynamics, 5 (2001), 153. doi: 10.1090/S1088-4173-01-00055-8.

[10]

Adrien Douady and John Hubbard, A Proof of Thurston's topological characterization of rational functions,, Acta. Math., 171 (1993), 263. doi: 10.1007/BF02392534.

[11]

Allan L. Edmonds, Branched coverings and orbit maps,, Michigan Math. J., 23 (1976), 289. doi: 10.1307/mmj/1029001762.

[12]

Kemal Eroğlu, Steffen Rohde and Boris Solomyak, Quasisymmetric conjugacy between quadratic dynamics and iterated function systems,, Ergodic Theory Dynam. Systems, 30 (2010), 1665. doi: 10.1017/S0143385709000789.

[13]

Peter Haïssinsky and Kevin Pilgrim, Thurston obstructions and Ahlfors regular conformal dimension,, Journal de Mathématiques Pures et Appliquées, 90 (2008), 229. doi: 10.1016/j.matpur.2008.04.006.

[14]

Peter Haïssinsky and Kevin M. Pilgrim, Coarse expanding conformal dynamics,, Astérisque No., 325 (2009).

[15]

Juha Heinonen, "Lectures on Analysis on Metric Spaces,", Universitext, (2001). doi: 10.1007/978-1-4613-0131-8.

[16]

Atsushi Kameyama, Julia sets of postcritically finite rational maps and topological self-similar sets,, Nonlinearity, 13 (2000), 165. doi: 10.1088/0951-7715/13/1/308.

[17]

R. Daniel Mauldin and Stanley C. Williams, Hausdorff dimension in graph directed constructions,, Trans. Amer. Math. Soc., 309 (1988), 811. doi: 10.1090/S0002-9947-1988-0961615-4.

[18]

Curtis T. McMullen, "Complex Dynamics and Renormalization,", Annals of Mathematics Studies, 135 (1994).

[19]

Sergiy Merenkov, A Sierpiński carpet with the co-Hopfian property,, Invent. Math., 180 (2010), 361.

[20]

John Milnor, Geometry and dynamics of quadratic rational maps,, With an appendix by the author and Tan Lei, 2 (1993), 37.

[21]

Kevin M. Pilgrim, Canonical Thurston obstructions,, Advances in Mathematics, 158 (2001), 154. doi: 10.1006/aima.2000.1971.

[22]

Christopher W. Stark, Minimal dynamics on Menger manifolds,, Topology Appl., 90 (1998), 21. doi: 10.1016/S0166-8641(97)00185-5.

[23]

Jeremy T. Tyson and Jang-Mei Wu, Quasiconformal dimensions of self-similar fractals,, Rev. Mat. Iberoam., 22 (2006), 205. doi: 10.4171/RMI/454.

[1]

Juan Wang, Yongluo Cao, Yun Zhao. Dimension estimates in non-conformal setting. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3847-3873. doi: 10.3934/dcds.2014.34.3847

[2]

Nuno Luzia. On the uniqueness of an ergodic measure of full dimension for non-conformal repellers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5763-5780. doi: 10.3934/dcds.2017250

[3]

Thomas Jordan, Mark Pollicott. The Hausdorff dimension of measures for iterated function systems which contract on average. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 235-246. doi: 10.3934/dcds.2008.22.235

[4]

Lok Ming Lui, Chengfeng Wen, Xianfeng Gu. A conformal approach for surface inpainting. Inverse Problems & Imaging, 2013, 7 (3) : 863-884. doi: 10.3934/ipi.2013.7.863

[5]

Zuxing Xuan. On conformal measures of parabolic meromorphic functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 249-257. doi: 10.3934/dcdsb.2015.20.249

[6]

Nicholas Hoell, Guillaume Bal. Ray transforms on a conformal class of curves. Inverse Problems & Imaging, 2014, 8 (1) : 103-125. doi: 10.3934/ipi.2014.8.103

[7]

Yunping Jiang, Yuan-Ling Ye. Convergence speed of a Ruelle operator associated with a non-uniformly expanding conformal dynamical system and a Dini potential. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4693-4713. doi: 10.3934/dcds.2018206

[8]

Tomasz Szarek, Mariusz Urbański, Anna Zdunik. Continuity of Hausdorff measure for conformal dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4647-4692. doi: 10.3934/dcds.2013.33.4647

[9]

Hans Henrik Rugh. On dimensions of conformal repellers. Randomness and parameter dependency. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2553-2564. doi: 10.3934/dcds.2012.32.2553

[10]

Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627

[11]

Domenico Mucci. Maps into projective spaces: Liquid crystal and conformal energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 597-635. doi: 10.3934/dcdsb.2012.17.597

[12]

Rossen I. Ivanov. Conformal and Geometric Properties of the Camassa-Holm Hierarchy. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 545-554. doi: 10.3934/dcds.2007.19.545

[13]

Welington Cordeiro, Manfred Denker, Michiko Yuri. A note on specification for iterated function systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3475-3485. doi: 10.3934/dcdsb.2015.20.3475

[14]

Robert Eymard, Angela Handlovičová, Karol Mikula. Approximation of nonlinear parabolic equations using a family of conformal and non-conformal schemes. Communications on Pure & Applied Analysis, 2012, 11 (1) : 147-172. doi: 10.3934/cpaa.2012.11.147

[15]

Sebastian Acosta. A control approach to recover the wave speed (conformal factor) from one measurement. Inverse Problems & Imaging, 2015, 9 (2) : 301-315. doi: 10.3934/ipi.2015.9.301

[16]

Rafael De La Llave, Victoria Sadovskaya. On the regularity of integrable conformal structures invariant under Anosov systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 377-385. doi: 10.3934/dcds.2005.12.377

[17]

Mohamed Badreddine, Thomas K. DeLillo, Saman Sahraei. A Comparison of some numerical conformal mapping methods for simply and multiply connected domains. Discrete & Continuous Dynamical Systems - B, 2018, 22 (11) : 1-28. doi: 10.3934/dcdsb.2018100

[18]

Nuutti Hyvönen, Lassi Päivärinta, Janne P. Tamminen. Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps. Inverse Problems & Imaging, 2018, 12 (2) : 373-400. doi: 10.3934/ipi.2018017

[19]

Pablo G. Barrientos, Abbas Fakhari, Aliasghar Sarizadeh. Density of fiberwise orbits in minimal iterated function systems on the circle. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3341-3352. doi: 10.3934/dcds.2014.34.3341

[20]

Ali Hyder, Luca Martinazzi. Conformal metrics on $\mathbb{R}^{2m}$ with constant Q-curvature, prescribed volume and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 283-299. doi: 10.3934/dcds.2015.35.283

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]